
High-Level Abstractions for Low-Level
Programming

Iavor Sotirov Diatchki
M.Sc. Computer Science, OGI School of Science & Engineering

at Oregon Health & Science University (2007)
B.Sc. Mathematics and Computer Science,

University of Cape Town (1999)

A dissertation presented to the faculty of the
OGI School of Science & Engineering

at Oregon Health & Science University
in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science

May 2007

The dissertation “High-Level Abstractions for Low-Level Programming”
by Iavor Sotirov Diatchki has been examined and approved by the following
Examination Committee:

Dr. Mark P. Jones, Associate Professor
Dept. of Computer Science and Engineering
Thesis Research Adviser

Dr. Andrew Tolmach, Associate Professor
Dept. of Computer Science
Portland State University

Dr. Greg Morrisett, Professor
Division of Engineering and Applied Science
Harvard University

Dr. Peter A. Heeman, Assistant Professor
Dept. of Computer Science and Engineering

ii

Acknowledgments

The writing of this dissertation would not have been possible without the
help of many people, and I would like to thank all of them for their continuous
support. In particular:

- Many thanks to my family—my mum, my dad, and my sister—for
always believing in me, and for exposing me to the world.

- Special thanks to my advisor, Mark P. Jones, whose help and guidance
have been invaluable, and are really appreciated. I am looking forward
to many future collaborations!

- Thanks to all my friends in Portland for their support, and for remind-
ing me to have fun.

- Last but not least, many thanks to the faculty and staff at OGI for
creating an excellent research environment, and for always being ready
to help.

This work was supported, in part, by the National Science Foundation
award number 0205737, “ITR: Advanced Programming Languages for Em-
bedded Systems.”

iii

iv

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Systems Programming . 2

1.2.1 Bitdata . 3
1.2.2 Memory Areas . 6

1.3 Working with Low-Level Data 9
1.3.1 Bit Twiddling . 9
1.3.2 Low-level Representations for Bitdata 11
1.3.3 External Specifications 13

1.4 This Dissertation . 14

I Background and Related Work 19

2 Related Work 21
2.1 Imperative Languages . 21
2.2 Functional Languages . 25
2.3 Domain Specific Languages 29
2.4 Summary . 31

3 Background: Type Systems 33
3.1 The λ-calculus . 33
3.2 Hindley-Milner Polymorphism 36
3.3 Qualified Types . 37

3.3.1 Overloading in Haskell 40
3.4 Improvement . 41

3.4.1 Functional Dependencies 43
3.5 Using Kinds . 46

v

3.6 Summary . 47

4 Natural Number Types 49
4.1 Basic Axioms . 50
4.2 Computation With Improvement 51
4.3 Rules for Equality . 52

4.3.1 Expressiveness of the System 53
4.4 Other Operations . 55

4.4.1 Predicate Synonyms 55

5 Notation for Functional Predicates 57
5.1 Overview . 57
5.2 Type Signatures and Instances 59
5.3 Contexts . 60
5.4 Type Synonyms . 63

5.4.1 Type Synonyms with Contexts 65
5.5 Data Types . 66

5.5.1 Constructor Contexts 67
5.5.2 Storing Evidence . 68

5.6 Associated Type Synonyms 70
5.7 Summary . 72

6 A Calculus for Definitions 73
6.1 Overview . 73
6.2 Matches . 75
6.3 Qualifiers . 78
6.4 Patterns . 79
6.5 Expressions and Declarations 81

6.5.1 Simplifying Function Definitions 82
6.5.2 Pattern Bindings . 84

6.6 Summary . 85

II Language Design 87

7 Working With Bitdata 89
7.1 Overview of the Approach . 90
7.2 Bit Vectors . 92

vi

7.2.1 Literals . 94
7.2.2 Joining and Splitting Bit Vectors 96
7.2.3 Semantics of the (#) Pattern 98

7.3 User-Defined Bitdata . 99
7.3.1 Constructors . 100
7.3.2 Product Types . 102
7.3.3 The ‘as’ Clause . 104
7.3.4 The ‘if ’ Clause . 107

7.4 Bitdata and Bit Vectors . 109
7.4.1 Conversion Functions 109
7.4.2 Instances for ‘BitRep’ and ‘BitData’ 110
7.4.3 The Type of ‘fromBits’ 112

7.5 Summary . 114

8 Static Analysis of Bitdata 117
8.1 Junk and Confusion! . 117
8.2 Checking Bitdata Declarations 120

8.2.1 ‘as’ clauses . 121
8.2.2 ‘if’ clauses . 123
8.2.3 Working with Sets of Bit Vectors 124

8.3 Checking Function Declarations 130
8.3.1 The Language . 130
8.3.2 The Logic . 131
8.3.3 The Algorithm . 132
8.3.4 Unreachable Definitions 133
8.3.5 Simplifying Conditions 134

8.4 Summary . 136

9 Memory Areas 137
9.1 Overview . 137

9.1.1 Our Approach: Strongly Typed Memory Areas 139
9.2 Describing Memory Areas . 141
9.3 References and Pointers . 143

9.3.1 Relations to Bitdata 145
9.3.2 Manipulating Memory 146

9.4 Representations of Stored Values 148
9.5 Area Declarations . 150

9.5.1 External Areas . 153

vii

9.6 Alternative Design Choices . 154
9.6.1 Initialization . 154
9.6.2 Dynamic Areas . 157

9.7 Summary . 158

10 Structures and Arrays 159
10.1 User Defined Structures . 159

10.1.1 Accessing Fields . 160
10.1.2 Alignment . 161
10.1.3 Padding . 164

10.2 Working with Arrays . 165
10.2.1 Index Operations . 166
10.2.2 Iterating over Arrays 167
10.2.3 Related Work . 169

10.3 Casting Arrays . 172
10.3.1 Arrays of Bytes . 173
10.3.2 Reindexing Operations 174

10.4 Summary . 178

III Examples and Implementation 181

11 Example: Fragments of a Kernel 183
11.1 A Text Console Driver . 183
11.2 Overview of IA-32 . 188
11.3 Segments . 189

11.3.1 Segment Selectors . 189
11.3.2 Segment Descriptors 190
11.3.3 Task-State Segment . 193

11.4 Interrupts and Exceptions . 194
11.5 User Mode Execution . 195
11.6 Paging . 198
11.7 Summary . 202

12 Implementation 203
12.1 Introduction . 203
12.2 Computation Values . 204
12.3 Representations for Bitdata 213

viii

12.4 Run Time System . 216
12.4.1 Calling Convention . 216
12.4.2 Stack Frames . 217
12.4.3 Traversing the Stack 219

12.5 Summary . 221

13 Conclusions and Future Work 223
13.1 Summary of Contributions . 223
13.2 Future Work . 224

13.2.1 Parameterized Bitdata 225
13.2.2 Computed Bitfields . 227
13.2.3 Views on Memory Areas 231
13.2.4 Reference Fields . 234
13.2.5 Implementation and Additional Evaluation 237

ix

x

List of Figures

1.1 Example of a layered system. 3
1.2 Decoding virtual addresses. 8
1.3 Structure of the dissertation. 17

3.1 Type system for Hindley-Milner with qualified types. 40

6.1 Typing rules for matches. 76
6.2 Typing rules for qualifiers. 79
6.3 Typing rules for patterns. 80

7.1 The syntax of user-defined bitdata declarations. 100

8.1 Transforming a BDD to satisfy the OBDD ordering. 129

9.1 Different memory representations of multi-byte values. 142

10.1 Alignment of a Field . 162

11.1 The Paging Hardware of IA-32 199

12.1 The stack, and the layout of a stack frame. 218
12.2 Walking the stack. 220

13.1 A reference field. 235

xi

Abstract

High-Level Abstractions for Low-Level Programming
Iavor Sotirov Diatchki

Ph.D., OGI School of Science & Engineering
at Oregon Health & Science University

May 2007

Thesis Advisor: Dr. Mark P. Jones

Computers are ubiquitous in modern society. They come in all shapes
and sizes: from standard household appliances and personal computers, to
safety and security critical applications such as vehicle navigation and con-
trol systems, bank ATMs, defense applications, and medical devices. Modern
programming languages offer many features that help developers to increase
their productivity and to produce more reliable and flexible systems. It is
therefore somewhat surprising that the programs that control many com-
puters are written in older, less robust languages, or even in a lower-level
assembly language. This situation is the result of many factors, some en-
tirely non-technical. However, at least in part, the problem has to do with
genuine difficulties in matching the results and focus of programming lan-
guage research to the challenges and context of developing systems software.

This dissertation shows how to extend a modern statically-typed func-
tional programming language with features that make it suitable for solving
problems that are common in systems programming. Of particular interest
is the problem of manipulating data with rigid representation requirements
in a safe manner. Typically, the constraints on the representation of the data
are imposed by an external specification such as an operating system binary
interface or the datasheet for a hardware device.

The design provides support for two classes of datatypes whose repre-
sentation is under programmer control. The first class consists of datatypes
that are stored in bit fields and accessed as part of a single machine word.
Standard examples can be found in operating system APIs, in the control
register formats that are used by device drivers, in multimedia and compres-

xii

sion codecs, and in programs like assemblers and debuggers that work with
machine code instruction encodings. The second class consists of datatypes
that require a fixed representation in regions of memory. Often these ‘mem-
ory areas’ are specific to a particular processor architecture, hardware device,
or OS kernel.

The approach builds upon well established programming language tech-
nology, such as type inference, polymorphism, qualified types, and the use of
monads to control the scope of effects.

xiii

Chapter 1

Introduction

1.1 Overview

Computers are ubiquitous in modern society. They come in all shapes and
sizes: from standard household appliances and personal computers, to safety
and security critical applications such as vehicle navigation and control sys-
tems, bank ATMs, defense applications, and medical devices. Modern pro-
gramming languages offer many features that could potentially help develop-
ers to increase their productivity and to produce more reliable and flexible
systems. For example, module systems help to manage the complexity of
large projects; type systems can be used to detect bugs at compile-time; and
automatic storage management techniques eliminate a common source of er-
rors. It is therefore somewhat surprising that the programs that control many
computers are written in older, less robust languages, or even in a lower-level
assembly language.

This situation is the result of many factors, some entirely non-technical.
However, we believe that at least part of the problem has to do with gen-
uine difficulties in matching the results and focus of programming language
research to the challenges and context of developing systems software. Other
projects have already explored the potential for using higher-level languages
for lower-level programming: a small sample includes the Fox Project [40],
Ensemble [61], Cyclone [46], and Timber [52]. Based on these, and on our
own experience using Haskell [76] to develop device drivers and an operating
system kernel [39], we have noticed that high-level language designs some-
times omit important functionality that is needed to program at the level

1

2 CHAPTER 1. INTRODUCTION

of hardware interfaces, kernel data structures, and operating system APIs.
We have therefore been working to identify the gaps in functionality more
precisely, and to investigate the design of language features that might fill
them.

1.2 Systems Programming

So, what do we mean by systems software? To answer this question, we
need to examine the structure of a typical software system. Usually, such
systems are designed using a layered approach. Each layer contains function-
ality that abstracts from the details of the layers below it, thus providing a
nicer environment for the layers above it. In this way, the layered approach
to software development enables us to split complex systems into simpler
components (for an example, see Figure 1.1). If, in addition, we also have
well defined interfaces between the layers, then we gain the further advantage
that we can reuse layers among different systems.

There are many concrete examples of layered systems, and we can view
the layers at different degrees of granularity. For example, if we take a coarse
view, we may split most software systems into two parts: (i) an operating
system (e.g., Linux), which abstracts hardware details and provides an ‘ide-
alized’ view of the machine; and (ii) application software (e.g., an Internet
browser), which performs specific user tasks, and is usually hardware inde-
pendent. Each of these layers itself consists of a number of layers. For exam-
ple, file systems abstract from the details of storage devices, while window
managers enable us to multiplex many displays on a single physical screen.

The different layers in the system have rather different goals. The lower
layers typically interact with various hardware devices, while the upper layers
tend to deal with more abstract tasks, such as performing complex compu-
tations, or interacting with people. To reflect these differences, it is common
to use the term systems programming to describe writing software for the
lower layers in a system, while the term application programming describes
the implementation of the higher layers.

At present, there is a difference in the tools that are used to write appli-
cations and systems software. Advanced programming languages are gaining
popularity in the implementation of applications software but systems soft-
ware is still written in fairly low-level languages that do not utilize modern
language technology. At least in part, this is because advanced program-

1.2. SYSTEMS PROGRAMMING 3

Figure 1.1: Example of a layered system.

ming languages often lack good support for writing systems software. This
is unfortunate, because the correctness of the systems programs is of critical
importance to the operation of the entire system. We should therefore use
all available tools, including advanced programming languages, to make the
construction of correct systems software simpler and less error prone.

Because of its low-level nature, systems software is often written in a style
that differs from application software. An important difference between the
two is that application software often has a lot of freedom in choosing the
representation of the data that it manipulates, while systems software usually
has to follow fairly rigid constraints dictated by the design of the hardware, or
by the format of low-level communication protocols. In the following sections,
we will describe a number of concrete examples that illustrate the different
kinds of data that typical systems programs manipulate. We do not assume
any specific details of these structures. Our only purpose in describing them
is to highlight the kinds of issues that arise when we write systems programs.

1.2.1 Bitdata

A common aspect of many system programs is that they need to manipulate
data that is stored in bit fields and accessed as part of a single machine
word. Standard examples can be found in operating system APIs; in the
control register formats that are used by device drivers; in multimedia and
compression codecs; and in programs like assemblers and debuggers that work
with machine code instruction encodings. We will refer to examples like this

4 CHAPTER 1. INTRODUCTION

collectively as bitdata.

Much of the time, the specific bit patterns that are used in bitdata en-
codings are determined by external specifications and standards to which the
systems programmer must conform. For example, an operating system stan-
dard will often fix a particular encoding for the set of flags that are passed
to a system call, while the datasheet for a particular hardware device will
specify the layout of the fields in a particular control register. In the general
case, bit-level encodings may use tag bits—that is, specific patterns of 0s and
1s in certain positions—to distinguish between different types of value, leav-
ing the bits that remain to store the actual data. For example, some bits in
the encoding of a machine code instruction set might be used to identify a
particular type of instruction, while others are used to specify operands.

We will now describe a small collection of examples that can be used to
illustrate some of the challenges of dealing with bitdata.

PCI Device Addresses. PCI [74] is a high performance bus standard that
is widely used on modern PCs for interconnecting chips, expansion boards,
and processor/memory subsystems. Individual devices in a given system can
be identified by a 16 bit address that consists of three different fields: an eight
bit bus identifier, a five bit device code, and a three bit function number.
We can represent the layout of these fields in a simple block diagram that
specifies the name and width (as a subscript) of each field, and from which
we can then infer the corresponding positions of each field.

bus (8) dev (5) fun (3)

By convention, we draw diagrams like this with the most significant bit on the
left and the least significant bit on the right. With this encoding, function 3
of device 6 on bus 1 is represented by the 16 bit value that is written 0x0133

in hexadecimal notation or as 00000001 00110 011 in binary, using spaces
to show field boundaries.

Timeouts in the L4 Micro-kernel. L4 is a second generation micro-
kernel design that was developed to show that it is possible to obtain a
minimal but flexible operating system kernel without compromising on per-
formance [60]. One of the versions of the L4 reference manual includes a
detailed ABI (application binary interface) that specifies the format that is

1.2. SYSTEMS PROGRAMMING 5

used for system call arguments and results [54]. For example, one of the pa-
rameters in the interprocess communication (IPC) system call is a timeout
period, which specifies how long the sender of a message should be prepared
to wait for a corresponding receive request in another process. Simplifying
the details just a little, there are three possible timeout values, as shown in
the following diagrams:

now 0 1 (5) 0 (10) = 0

period 0 e (5) m (10) = 2em µs

never 0 (16) = ∞

There are two special values here: A timeout of ‘now’ specifies that a send
operation should abort immediately if no recipient is already waiting, while a
timeout of ‘never’ specifies that the sender should wait indefinitely. All other
time periods are expressed using a simple kind of (unnormalized) floating
point representation that can encode time periods, at different levels of gran-
ularity, from 1µs up to (210 − 1)231µs, which is a period slightly exceeding
610 hours. There is clearly some redundancy in this encoding; a period of
2µs can be represented with m = 2 and e = 0 or with m = 1 and e = 1.
Moreover, the representations for ‘now’ and ‘never’ overlap with the repre-
sentations for general time periods; for example, a sixteen bit period with
e = 0 and m = 0 must be interpreted as ‘never’ and not as the 0µs time that
we might calculate from the formula 2emµs. While this detail of the encoding
may seem counter-intuitive, it was likely chosen because many programs use
only ‘never’ timeouts, and most machines can test for this special case—a
zero word—very quickly with a single machine instruction. One final point
to note is that the most significant bit in all of these encodings is zero. In
fact, the L4 ABI also provides an interpretation for time values which have
one in the most significant bit. Such values indicate an absolute rather than
a relative time. Because there are places in the ABI where only relative times
are permitted, we prefer to treat these using different types, but we still need
to retain the full 16-bit representation for compatibility.

Instruction Set Encodings for the Z80. The Zilog Z80 is an 8 bit
microprocessor with a 16 bit address bus that was first released in 1976, and
continues to find many uses today as a low-cost micro-controller [103]. The

6 CHAPTER 1. INTRODUCTION

Z80 instruction set has a language of 252 root instructions, each of which is
represented by a single byte opcode. There are, of course, 256 possible byte
values, and the four bytes that do not correspond to instructions are used
instead as prefixes to access an additional 308 instructions. For example,
one of these prefixes is the byte 0xCB, which signals that the next byte in
the instruction stream should be interpreted as a particular bit twiddling
instruction using one of the four formats illustrated by the following diagrams:

0 0 s (3) r (3) SHIFT s , r

0 1 r (3) n (3) BIT r , n

1 0 r (3) n (3) RES r , n

1 1 r (3) n (3) SET r , n

n r s
000 B RLC

001 C RRC

010 D RL

011 E RR

100 H SLA

101 L SRA

110 (HL) —
111 A SRL

The most significant two bits in each case are tag bits that serve to distin-
guish between shift, bit testing, bit setting, and bit resetting instructions,
respectively. The remaining portion of each byte is split into two three-bit
fields, each of which specifies either a bit number n, a register/operand r , or
a shift type s as shown by the table on the right. Details of what each of
these operands means can be found in documentation elsewhere [103]; for the
purposes of this document it suffices to note only that there are three distinct
types for n, r , and s , all of which are encoded in just three bits, and that the
appropriate interpretation of the lower six bits in each byte is determined by
the value of the two tag bits. (Technically speaking, the s type contains only
seven distinct values rather than the maximum of eight that is permitted by
a three bit encoding because it does not use the bit pattern 110.)

1.2.2 Memory Areas

In our explorations of systems-level programming we have also encountered a
wide range of uses of memory areas. These are data structures that are stored
in memory, but they have a markedly different character to the familiar list-
and tree-like data structures that are common in functional programming,
or the abstract objects common in object-oriented languages. Often these

1.2. SYSTEMS PROGRAMMING 7

memory areas are specific to a particular processor architecture, hardware
device, or OS kernel. Next we review some examples of such data structures.

Examples from the Intel IA32. The Intel IA32 processor family [45]
contains numerous examples of both bitdata and memory areas. In partic-
ular, the operation of the machine is controlled by manipulating a number
of tables that reside in memory and have a specific format that is deter-
mined by the hardware. For example, page directories and page tables are
used to control the translation between virtual and physical addresses (see
Figure 1.2). Interrupt descriptor tables specify how to handle exceptions
and interrupts. Segment descriptor tables are used to partition the virtual
memory of a machine into segments, which may have different protection
properties. Task state segments are records that contain data used to sup-
port hardware-based multitasking. Besides the different configuration tables
for the machine, memory areas are also used when we need to manipulate
memory mapped devices (e.g., the text console), and when the hardware
needs to save some of its state, for example when transferring control to the
handler for a particular exception.

As a more detailed example, Figure 1.2 illustrates one of the ways in
which the IA32 hardware uses the page directory and page tables to decode
virtual addresses. A 32-bit virtual address is viewed as a piece of bitdata
that contains three indexes of sizes 10, 10 and 12 bits respectively. The
first index identifies an entry in the page directory, whose physical address
is stored in register CR3. This entry is used to locate an appropriate page
table to use for decoding. The second index identifies an entry in the page
table, which contains the address of a physical page. Finally the last index
is the location in the physical page that contains the data for the virtual
address. Pages are all of size 212 = 4096 bytes. This data structure exhibits
a number of interesting properties. For example, both page tables and page
directories contain 1024 entries, which are indexed with 10 bits. This ensures
that we will never mistakenly access data that is outside the table. Another
interesting property is that the entries in the page directory/table are also
a special form of bitdata, which uses only 20 bits to identify the address
of a page-table/physical page, while the remaining bits are used to specify
configuration options, such as access permissions. The fact that we only
have 20 bits to identify a memory area places constraints on its locations in
memory. For example, with 20 bits we can only specify page-table addresses

8 CHAPTER 1. INTRODUCTION

Figure 1.2: Decoding virtual addresses.

that are aligned on 4K boundaries.

Example from the L4 micro-kernel. Not all constraints on data in
systems programming are due to hardware requirements. We get similar
constraints when we specify a binary interface between software systems,
for example the interface between an OS kernel and the processes that use
it. The specification of the L4 micro-kernel [54] includes a number of data
structures with rigid memory representations. The kernel information page
(KIP) is a record that is mapped into every address space and contains data
about the current configuration of the kernel. Another example from the
L4 microkernel is the user-space thread control blocks (UTCBs), which are
memory areas that are used to communicate values between the kernel and
user threads. There are also numerous examples of uses of memory areas in
concrete L4 implementations that are not dictated by the L4 specification,
but instead are engineering decisions made by the kernel implementers.

Similar examples can be found for other processor architectures, devices,
or operating systems, both inside the kernel implementation, and outside in
the interfaces that the kernel presents to user processes. These memory areas
exhibit a number of features that distinguish them from ordinary abstract

1.3. WORKING WITH LOW-LEVEL DATA 9

data found in high-level languages. In addition, these memory area structures
often have fixed sizes, rigidly defined formats or representations, and may be
subject to restrictions on the addresses at which they are stored. As we
have already discussed, an IA32 page table is always 4K bytes long and must
begin at an address that is a multiple of 4K. In this case, the alignment of the
structure on a 4K boundary is necessary to ensure that each page table can be
uniquely identified by a 20 bit number. In other cases, alignment constraints
are used for performance reasons or because of cache line considerations.
Storage allocation for memory areas is often entirely static (for example, an
OS may allocate a single interrupt descriptor table that remains in effect for
as long as the system is running), or otherwise managed explicitly (e.g., by
implementing a custom allocation/garbage collection scheme).

1.3 Working with Low-Level Data

In this section we examine various existing approaches to working with the
low-level data that is common in systems programming.

1.3.1 Bit Twiddling

From a high-level, it is clear that bitdata structures have quite a lot in com-
mon with the ‘sum-of-product’ algebraic datatypes that are used in modern
functional languages: where necessary, each encoding uses some parts of the
data to distinguish between different kinds of value (the sum), each of which
may contain zero or more data fields (the product).

In practice, however, programmers usually learn to manipulate bitdata
using so-called bit twiddling techniques that involve combinations of shifts,
bitwise logical operators, and carefully chosen numeric constants. Some of
the more common idioms of this approach include clearing the ith bit in a
word x using x &= ~(1 << i), or extracting the most significant byte from
a 32 bit word w using (w >> 24) & 0xff. With experience, examples like
these can become quite easy for programmers to recognize and understand.
However, in general, bit-twiddling leads to code that is hard to read, debug,
and modify. One reason for this is that bit-twiddling code can over-specify
and obfuscate the semantics of the operation that it implements. Our two
examples show how a conceptually simple operation, such as clearing a single
bit, can be obscured behind a sequence of arguably more complex steps. As a

10 CHAPTER 1. INTRODUCTION

result, human readers must work harder to read and understand the effect of
this code. Compilers must also rely on more sophisticated optimization and
instruction selection schemes to recover the intended semantics and, where
possible, substitute more direct implementations. Like the Z80, many ma-
chines include a bit reset instruction that can be used to clear a single bit
in a register or memory operand. However, it will take special steps for a
compiler to recognize when this instruction can be used to implement the
earlier, bit twiddling code fragment. Bit twiddling idioms can also result in
a loss of type information, and hence reduce the benefits of strong typing
in detecting certain kinds of program error at compile-time. The bit pat-
tern that is used to program a device register may, for example, consist of
several different fields that contain conceptually different types of value. Bit
twiddling, however, usually bypasses this structure, treating all data homo-
geneously as some kind of machine word, with few safeguards to ensure that
individual fields are accessed at the correct offset, with the correct mask, or
with appropriately typed contents.

Some of the most widely used systems programming languages, notably
C/C++ and Ada, provide special syntax for describing and accessing bit
fields, and these go some way to addressing the problems of raw bit twid-
dling. In C/C++, however, the primary purpose of bit fields is to allow
multiple data values to be packed into a single machine word, and specific
details of data layout, including alignment and ordering, can vary from one
implementation to the next. As a result, different C/C++ compilers will, in
general, require different renderings of the same bitdata structure to achieve
the correct layout. Ada improves on this by allowing programmers to pro-
vide explicit and more portable representation specifications for user-defined
datatypes. These languages, however, do not typically provide direct mecha-
nisms for dealing with tag bits, or for using them to support pattern-matching
constructs that automate the task of distinguishing between different forms
of data.

In practice, programs that involve significant manipulation of bitdata of-
ten define a collection of symbolic constants (representing field offsets and
masks, for example) and basic functions or macros that present a higher-level,
and possibly more strongly typed interface to the operations that are needed
in a given application. This approach also isolates portability concerns in a
software layer that can potentially be rewritten to target a different compiler
or platform. In effect, this amounts to defining a simple, domain-specific lan-
guage for each application, which would not be such a bad thing if it weren’t

1.3. WORKING WITH LOW-LEVEL DATA 11

for the duplication of effort that is involved in identifying, implementing,
and learning to use the set of basic abstractions that it provides. One of the
goals of this work is to provide general and flexible constructs for working
with bitdata so that we can avoid the need to invent a new domain-specific
language for each application that we work on.

1.3.2 Low-level Representations for Bitdata

In this section, we consider how we might write Haskell programs that manip-
ulate PCI addresses of the form described in Section 1.2.1. If the language
had already been extended with an appropriate collection of sized integer
types (e.g., Int3, Int8, etc.), then it would actually be possible to represent
PCI addresses as elements of a standard Haskell data type:

data PCIAddr = PCIAddr { bus :: Int8, dev :: Int5, fun :: Int3 }

Ideally, we might hope that a ‘smart enough’ Haskell compiler could generate
code using 16 bit values to represent values of type PCIAddr with exactly the
same layout that was suggested by the earlier diagram. For Haskell, at least,
this is impossible because the language uses lazy evaluation. This means
that every type—including PCIAddr as well as each of its component types
Int8, Int5, and Int3—has to contain a value corresponding to ‘suspended’
computations. It follows, therefore, that the semantics of PCIAddr has more
values than can be represented in 16 bits. This specific problem can (al-
most) be addressed by inserting strictness annotations in front of each of the
component types, as in the following variation:

data PCIAddr = PCIAddr { bus :: !Int8, dev :: !Int5, fun :: !Int3 }

Given this definition, it is conceivable that a Haskell compiler might be able
to infer that it is safe to use our preferred sixteen bit representation for
PCI addresses. (Technically, this would require a lifted semantic domain
to account for the remaining bottom element in this modified PCIAddr type.)
However, there is nothing in the semantics of Haskell to guarantee this choice
of representation, and, to the best of our knowledge, no existing Haskell (or
ML) compiler even attempts it.

For most purposes, the representation that a compiler chooses for a given
data type is only important when values of that type must be communicated
with the outside world. Using either of the previous Haskell representations

12 CHAPTER 1. INTRODUCTION

for PCIAddr, we could define functions like the following to marshal back and
forwards between external and internal representations of PCI addresses (we
take some liberties with Haskell syntax here, using >> and << for the corre-
sponding shift operators of C and & and | for bitwise and and or operators,
respectively):

toPCIAddr :: Int16 → PCIAddr

toPCIAddr addr = PCIAddr { bus = (addr >> 8) & 0xff,

dev = (addr >> 3) & 0x1f,

fun = addr & 7 }

fromPCIAddr :: PCIAddr → Int16

fromPCIAddr pci = (pci.bus << 8) | (pci.dev << 3) | pci.fun

In effect, functions like these might be used to package bit twiddling code
in a single place so that the higher-level PCIAddr representation can be used
exclusively in the remaining portions of the code. In theory, at least, if we
follow this approach, then the details of the representation that a compiler
chooses for PCIAddr would not be significant.

In practical terms, however, there are some serious consequences. For
example, it would be unfortunate if we ended up using these functions to
import PCI addresses into the functional world, and then export them out
again, without ever having made any use of their structure. In that case,
all the resources that are spent in decoding, storing, and then re-encoding
would be wasted. (Note that lazy evaluation is no help here, not just because
of the costs involved in creating a suspended computation, but also because
it would simply delay these costs, not eliminate them.) This is one exam-
ple of the overhead that we inevitably incur if we try to maintain multiple
representations of a single type.

Furthermore, while it is not particularly difficult to write functions like
toPCIAddr and fromPCIAddr, it is tedious work, especially when dealing with
more complex examples. It is also somewhat error prone because there is
nothing to ensure that the functions we define are mutual inverses. Clearly,
it would be better if we could arrange to have the code for these functions
generated automatically by a carefully designed tool that would guarantee the
required behavior. In some cases, we could use Haskell’s deriving mechanism
to get bit representations for values automatically. However, in many other
situations this is not possible because, standard Haskell datatypes do not
provide the necessary information about layout.

1.3. WORKING WITH LOW-LEVEL DATA 13

1.3.3 External Specifications

Another possibility is to use an ‘interface description language’ (IDL) that
describes the format of the data that we need to manipulate. IDLs are
small languages that describe various data representations. Usually IDLs
come together with tools that can turn IDL specifications into code that can
encode and decode data. IDLs have been widely used to provide programmer
support for remote procedure call (RPC) mechanisms. Invoking a remote
procedure requires a programmer to encode the data for transmission over
the network, and then later decode the result of the remote procedure. The
same idea has been used for communication between programs written in
different languages, as they often use different representations for values.

There are a number of different specification languages that can be used
to work with data in many different encodings and sources. Some, such
as HaskellDirect [26] and CamlIDL [58], are designed as part of the foreign
function interface to high-level languages. Their goal is to generate functions
that translate between the external representations of data (described in the
specification) and the internal representation used by a particular implemen-
tation of the high-level language. Others, such as ASN.1 [23], DataScript
[6] or PADS [27], support the description of fairly complex data formats.
Their functionality is comparable to that of parser generators because they
can generate functions that process large amounts of data conforming to a
complex specification. Last, but not least, there are a number of domain
specific IDLs that are useful when solving a specific task. Examples of these
include Devil [62], which can be used to specify the interface to hardware
devices (e.g., a mouse, or a network card), and SLED [81], which is aimed
at describing the formats of machine instructions (e.g., the encoding of the
instructions on the IA32 architecture).

While some IDLs, such as Devil, for example, can be quite useful in
systems programming, in general, using a separate IDL to work with the
kinds of examples we described at the beginning of this section has a number
of drawbacks. One problem is that it requires programmers to learn one
or more new languages, which typically have a number of common features,
but are presented in different ways. This imposes unnecessary burden on
the programmer, but also can make reasoning about programs more complex
because different parts of the code are written in different languages. Another
problem is that the tools that generate code from IDLs often use marshalling
to import and export data. This has a negative impact on the performance

14 CHAPTER 1. INTRODUCTION

of programs. While marshalling could in principle be avoided, this often
requires close cooperation between the IDL tools, and the implementation of
the general purpose language, which blurs the distinction between the two
languages. When we use a separate IDL, we also get a fairly weak integration
with the general purpose language. For example, often the two use different
notions of types, and we cannot use specialized language notations (e.g.,
pattern matching) to manipulate the data that was described with the IDL.

In conclusion, external specifications are not ideally suited to the kind
of problem that arise in systems programming, and a much more attractive
alternative is to use a programming language that has direct support for
working with low-level data.

1.4 This Dissertation

In this work, our goal is to show how to extend a modern statically-typed
functional programming language with features that make it suitable for
solving problems that are common in systems programming. In particular,
we target the problem of safely manipulating data with rigid representation
requirements, such as bitdata and memory areas. Our approach builds upon
well established programming language technology, such as type inference,
polymorphism, qualified types, and the use of monads to control the scope
of effects.

Using a high-level programming language is a first step towards the devel-
opment of reliable high-assurance systems software because such languages
enable programmers to express their ideas in a direct style, automating many
error prone low-level tasks. This makes programs easier to write, understand,
analyze, and modify. In addition, functional languages are built upon a
well-understood semantic framework, which makes programs written in such
languages more amenable to formal reasoning and verification.

To illustrates the kind of programs that can be written using the ideas in
this dissertation, we present a program fragment that specifies the memory
layout for the text console on PCs. This example is worked out more fully
in Section 11.1.

area screen in VideoRam :: Ref Screen

type Screen = Array Rows Row

type Row = Array Cols (LE SChar)

1.4. THIS DISSERTATION 15

type Rows = 25

type Cols = 80

bitdata SChar = SChar { attr :: Attr, char :: Bit 8 }

bitdata Attr

= Attr { flash :: Bool, -- flashing?

bg :: Color, -- background color

bright :: Bool, -- foreground bright?

fg :: Color -- foreground color

}

bitdata Color

= Black as 0 | Blue as 1 | Green as 2 | Cyan as 3

| Red as 4 | Magenta as 5 | Yellow as 6 | White as 7 :: Bit 3

The overall structure of the dissertation is illustrated in Figure 1.3. In
Part I, we present different aspects of the programming language technology
that we shall use throughout this dissertation. We start with an overview of
related work in Chapter 2. In Chapters 3–5, we provide details about the
type system:

• Chapter 3 provides an overview of the basics. It introduces some no-
tation and contains references to additional information about the rel-
evant topics.

• In Chapter 4, we describe how we work with natural numbers in the
type system, as they play an important role in our language design.

• In Chapter 5, we describe an intuitive notation for working with type
functions. While this is not essential to our design, as in theory we
could do without it, in practice it leads to more readable programs.

Chapter 6 introduces a calculus of patterns and definitions. We use this
notation to specify the meanings of various pattern matching constructs in-
troduced in later chapters.

Our main language design is presented in Part II of the dissertation, which
contains Chapters 7–10:

• In Chapter 7, we show how to extend a functional language—such
as Haskell or ML—with support for bitdata types. In Chapter 8, we

16 CHAPTER 1. INTRODUCTION

identify certain bitdata types that require special care because they
violate useful algebraic properties. We present algorithms to detect
such types and to help programmers work with them.

• In Chapters 9 and 10, we describe how to add support for working
with memory areas. Chapter 9 introduces the basic components of
the design, while Chapter 10 describes operations for working with
structured areas such as arrays and structures.

Part III concludes the dissertation. In Chapter 11, we present a number
of examples to demonstrate our design in action. Our design evolved together
with an implementation and, in Chapter 12, we present some of the details of
the back-end of our implementation. Finally, in Chapter 13 we outline some
ideas for future work and summarize our findings.

1.4. THIS DISSERTATION 17

Figure 1.3: Structure of the dissertation. The gray areas group chapters
that belong to the same part. The arrows indicate key dependencies between
chapters. The chapters on the left contain the core of our design, while the
chapters on the right contain technical details and examples.

18 CHAPTER 1. INTRODUCTION

Part I

Background and Related Work

19

Chapter 2

Related Work

There has been a lot of research on various approaches to writing systems soft-
ware. In this chapter we provide a broad survey of the different approaches
that have been used, studied, or proposed in previous work.

2.1 Imperative Languages

In this section we examine some well-known ‘imperative’ languages that were
designed and traditionally have been used for systems programming. For our
purposes, we consider a language to be ‘imperative’ if it is a first-order lan-
guage (i.e., functions are not values), and if the main way to write programs
is by sequencing statements, rather than evaluating expressions.

C At present, the most popular language for writing systems software is
probably C [53]. It was designed in the early 1970s and, since then, it has
been used for the development of many systems (e.g., UNIX [10]). It is a
fairly simple language, whose design favors pragmatics over safety.

C is a statically typed language, but the type system is fairly simple, and
it is common to cast values between seemingly incompatible types. As a re-
sult, it is possible to write C programs that could not have been written in a
type-safe manner in the languages that were used when C was designed. Un-
fortunately, this flexibility comes at a cost: it is quite easy to write programs
that contain errors that are difficult to detect and correct.

Typically, implementations do not perform any run-time checks, and
working with malformed values usually results in unspecified behavior. The

21

22 CHAPTER 2. RELATED WORK

basic types in C include various numeric types, enumerations, structures,
unions, arrays and pointers. The types determine how to manipulate data,
but ensuring the correctness of the data (and determining if it is there at all)
is left entirely to the programmer. For example, given a pointer to an array
p, we can access its n th element with the expression p[n-1]. It is the job of
the programmer to ensure that p is really a pointer to an array that has at
least n elements.

The types in C are often used to describe the layout of memory areas.
Because the language allows arbitrary casts between values, it is easy to
change the ‘view’ on low level data, which is quite useful in some situations.
For example, we can cast a pointer to an array of bytes, into a pointer to
structured data, which then enables us to use the structured interface to
manipulate the data.

One pitfall is that the C language leaves a lot of the representation de-
tails up to implementations. In some cases this is reasonable, because many
system-level data structures are hardware specific. It is unfortunate, how-
ever, that different implementations on the same platform could potentially
use different data representations. As a result of this, programs that simply
cast bytes into structured data have very implementation specific behavior.
For example, the C language specification states that the fields of structures
should be placed in increasing memory locations, but it also allows arbitrary
padding between them [17] (Section 6.7.2.1, bullet 12). Such casting is also
dangerous if the representation of multi-byte values is important, as they can
be stored using either little- or big- endian representation.

The C language also has some support for working with bitdata. Pro-
grammers may specify the number of bits that should be occupied by fields
in structures and unions. This feature is convenient when programmers need
to pack more data into less space, but it is not commonly used when work-
ing with hardware devices because, again, it is up to each implementation
to determine how exactly to organize the bit-fields in a machine word. As
a consequence, programmers have less control over the representation of the
data.

From this discussion, it is apparent that there is some tension in the
design of C: on the one hand, implementations have a lot of freedom to
choose the representation for data, on the other, systems programmers need
to specify explicit layouts for bitdata and memory areas. In practice, this
tension is resolved by using a single language implementation. For example,
the gcc compiler [89] is the commonly used C implementation on Linux.

2.1. IMPERATIVE LANGUAGES 23

Using a single implementation also addresses the issue of implementation
specific language extensions. For example, an important issue when writing
systems software is the alignment of data, but there is little support for this
in standard C. To work around this, gcc supports an extension that can be
used to specify alignment when declaring data. For example, this is how we
can declare an array that is aligned on 4096 byte boundary:

int page[1024] __attribute__((aligned(4096)));

This state of affairs is unfortunate because, even with a single language
implementation, there may be differences between the versions of the imple-
mentation (one of the reasons for the proverbial ‘bit-rot’), and the lack of an
precise specification makes it difficult to write robust software. Indeed, sim-
ilar concerns have motivated the development of a theory for describing the
implementation-dependent assumptions that are present in programs written
in C-like languages [72].

Modula-3. Another imperative language that was designed for writing sys-
tems software is Modula-3 [18]. It is was designed in the 1980s, as a simpli-
fication and improvement over the previous languages in the Modula family.
It is particularly interesting because it was designed to be a safe language
for systems programming. It supports automatic memory management via
garbage collection, and it is a strongly typed language (i.e., it disallows ar-
bitrary casting between different types of values). It has good support for
abstraction through modules, which have well-defined interfaces.

Modula-3 has a number of types, including ordinal types, references, ar-
rays, and records. The representations of the types are not specified by the
Modula-3 report, although the language contains operators that can deter-
mine the number of bits, bytes, and addressable locations occupied by values.
There is some support for working with bits using packed types or sets. Pro-
grammers may use packed types to specify how many bits should be occupied
by the values of a type when they are stored inside other structures (e.g., ar-
rays). This is mostly useful for reducing the amount of space occupied by
data because there is no way to specify the bit-patterns that should be used
to represent the values. Sets are bit-vectors that contain a bit for every value
in the type of the set elements. The bit for a value is 1 when the value is
present in the set, and 0 otherwise. The bit-vectors in this case are used as
an efficient representation for finite sets.

24 CHAPTER 2. RELATED WORK

Another interesting property of the types in Modula-3 is that arrays may
be fixed, in which case their size is known statically; otherwise they are
open. Programmers can use range types (e.g., {0 .. 7}) to index safely
into arrays. There are operations that manipulate range types (performing
checks), but it is nice that, for fixed arrays, programmers may use FOR loops
to iterate safely through an entire array without performing unnecessary
bounds checks. Unfortunately, because the language does not have support
for polymorphism, programmers often have to resort to using open arrays,
for example, in functions that can manipulate arrays of different sizes.

With respect to references, Modula-3 is mostly safe, in that it does not
allow arbitrary operations on references in safe modules. However, references
may be NULL, in which case dereferencing results in a checked run-time er-
ror. In addition, Modula-3 allows arbitrary reference arithmetic, but only in
modules that are marked as unsafe, a property that is automatically tracked
and propagated by the system.

SPIN. Modula-3 was used for the development of an extensible operating
system kernel, called SPIN [11, 84]. The kernel is designed in such a way
that its functionality can be extended by adding modules that share the
same address space as the kernel. This gains efficiency because it avoids
costly context switches. To ensure the safety of the resulting system, SPIN
relies on the fact that modules are written in a safe subset of Modula-3, which
ensures that they cannot accidentally corrupt the kernel’s private data. In
the process of implementing the kernel, the SPIN team identified the need for
some extensions to Modula-3 [43]. In particular, they identified the need for
a VIEW construct that allows casting between arrays of bytes and structured
data, such as records, without copying. To implement such a construct, the
types in the language would need fixed representations.

Cyclone. While the simplicity of C has its benefits, the language provides
little to help programmers write safe and correct code. A number of the
safety gaps in C are addressed in the design of Cyclone [46], which is a safe
dialect of C. Cyclone programs resemble C programs, but the language uti-
lizes modern programming language technology to help programmers. For
example, besides the usual C types, Cyclone provides support for working
with algebraic data types, which provide a convenient and safe way to work
with tree-like data structures. In addition, Cyclone has a much stronger type

2.2. FUNCTIONAL LANGUAGES 25

system than C, and this is used in a variety of ways to enforce important
safety properties of programs. Examples include the use of polymorphism to
support functions that safely manipulate different types of data; distinguish-
ing between nullable and non-nullable pointers types; tracking the sizes of
arrays; and keeping track of the regions occupied by various pieces of data.
Where the type system cannot ensure the correctness of programs statically,
the Cyclone implementation inserts run-time checks, which raise exceptions
if they fail. In summary, while it resembles C, Cyclone is a modern systems
programming language in its own right.

2.2 Functional Languages

In this section we examine different aspects of writing systems programs
in functional languages. The distinguishing characteristic of functional lan-
guages is that programs are typically written in a style that evaluates expres-
sions, rather than sequencing statements, which gives them a more declara-
tive feel. In addition, functional languages typically have good support for
working with function values. Like any other value, functions can be passed
or returned from other functions, and also stored in data structures. This
simple idea is very powerful and can be used to encode a number of pro-
gramming patterns directly in the language. In general, functional languages
tend to operate at a fairly high level of abstraction, often utilizing automatic
memory management and advanced type systems. (The use of advanced type
systems is in no way specific to functional languages. For example, TAL [69]
is an assembly language with an advanced type system, while Scheme [1] and
Erlang [3] are functional languages that are dynamically typed.)

Effects. Writing systems software requires programs to interact with their
environment (i.e., the various devices controlled by the software), to manip-
ulate state, and to handle exceptions. Features such as these are commonly
known as computational effects. In functional languages, working with com-
putational effects poses some challenges. The reason is that computational
effects often have an ‘imperative’ semantics (e.g., the order in which they are
performed is important), which is different from the expression-centric evalu-
ation of functional languages. Fortunately, there are a number of approaches
that have been developed to deal with this problem.

One option is to use expressions with side-effects. Evaluation of such

26 CHAPTER 2. RELATED WORK

expressions not only produces a result, but may also have a computational
effect, such as interacting with a device, for example. Working with such ex-
pressions requires special attention by programmers (and implementations)
because they violate the principle of referential transparency (i.e., the same
expression may produce different values if evaluated multiple times). This
approach is used in a number of functional languages that have strict eval-
uation semantics (e.g., SML [64]), but it is not suitable for languages with
‘lazy’ (i.e., on demand) evaluation semantics because, in such languages, it
is difficult to determine the order in which expressions are evaluated, and
hence the order in which effects are performed.

Even in strict languages, expressions with side-effects complicate reason-
ing about programs, and it is therefore desirable to distinguish between pure
and effectful parts of a program. This can be done using effect systems
[87], or monadic encapsulation [66, 67, 78], which are closely related [25, 96].
The idea behind monadic encapsulation is to introduce special values that
describe what effects need to be performed rather than performing them di-
rectly. Such ‘computation’ values can be manipulated like any other value in
the language and, in fact, closely resemble functional values. In this setting,
the execution of functional programs has two ‘modes’: (i) pure evaluation
of expressions that produce values; and (ii) execution of the side effects de-
scribed by computation values. This approach is used in Haskell [76, 75].

For the specific effect of interacting with the environment, there is another
(non-monadic) approach that has been used. The idea is to view programs as
transforming a (lazy) stream of requests from the environment into a (lazy)
stream of responses [55, 42, 38]. The different approaches to performing input
and output in functional languages are studied in Gordon’s dissertation [34].

Embedded Gofer. An interesting example of writing systems software in
a functional language is Malcolm Wallace’s work on Embedded Gofer [97]. It
describes extensions to Haskell that make it more suitable for writing soft-
ware for embedded systems. In particular, it adds support for communicating
processes with type checked message passing, interrupt handling, register ac-
cess and real-time garbage collection. The language implementation has a
very small run-time system and was used to write and test some real embed-
ded software [98]. While Embedded Gofer does not have support for working
with low-level data, it addresses a number of other issues that are important
to the systems programmer.

2.2. FUNCTIONAL LANGUAGES 27

The Fox Project. A large amount of research related to writing systems
software in functional languages was conducted as part of the Fox Project
at CMU [40]. One part of the Fox project was the development of FoxNet
[14], which is a network protocol stack that is entirely implemented in ML.
It makes use of the abstraction mechanisms of the language (in particular,
its powerful module system), resulting in a modular implementation. The
FoxNet implementation requires efficient manipulation of arrays, which is
achieved with a new abstraction called word arrays [14]. There is also a
general framework that provides a common interface for manipulation of
sequence types with different implementations [13]. While FoxNet presents
an example of a piece of system software written in a functional language,
the Fox project also has a number of general contributions to functional
languages, which had an indirect but important impact on their suitability
for systems programming. For example, advances in compiler technology
[68, 88], make it possible to execute functional programs with an efficiency
comparable to that of imperative code.

Operating Systems. Another area of interest is the use of functional lan-
guages for operating system development. An early attempt in this area was
the development of the ‘Hello’ operating system [30], which is implemented
in SML. The idea with this line of research is to adjust the run-time system
of a programming language in such a way that it can operate directly on the
hardware, without the support of an underlying OS. A more recent devel-
opment in the same spirit is the ‘House’ kernel [39], which is implemented
in Haskell. The ‘House’ kernel replaces Haskell’s IO monad with a different
monad (called H) that provides a low-level interface to working with the ma-
chine. The H layer of the system is implemented in a mixture of C and Haskell
using Haskell’s foreign function interface. Another line of research in a simi-
lar direction is the development of the Coyotos operating system [83], which
is to be implemented in BitC, a functional programming language developed
in parallel with the system. There is also a project called Singularity [44],
currently in development at Microsoft, which aims to develop a new operat-
ing system design by exploiting advanced programming language technology
provided in C#.

Experience in Industry. Functional languages have also been used for
the development of systems software in industry. A prominent example in

28 CHAPTER 2. RELATED WORK

this area is Erlang [3], developed and used by Ericsson to program telephony
switches. Erlang is a dynamically typed language that has good support for
concurrency and distributed computation, and has been used to implement
large commercial systems. It has some support for working with binary data
by using special values called binaries, which can be manipulated with its bit
syntax [37].

Another interesting functional language developed in industry is BlueSpec
[5], which is aimed at hardware design (e.g., programming FPGAs). Blue-
Spec’s design is based on Haskell and so it inherited a host of useful features,
including Haskell’s powerful type system and its clean syntax (although later
versions of BlueSpec have adopted a different notation more familiar to hard-
ware designers). BlueSpec is particularly related to our work because it has
good support for working with bitdata. This is necessary because, in order
to program the hardware, data has to have rigid bit representations.

Foreign Function Interfaces. Because functional languages operate at
a fairly high level of abstraction, they often come equipped with a foreign
function interface (FFI) that enables them to interact with code written in
other languages (often C). Data representation issues are important at the
boundary between languages because different languages may represent data
in different formats. There are two main approaches to implementing an
FFI: one approach uses a small external specification language to generate
marshalling code automatically [26, 58], while the other allows programs
to manipulate external data directly. This second approach is called data
level interoperability [29] and has been used, for example, to integrate new
functional code with existing legacy software [91].

The C FFI of Standard ML of New Jersey (SML/NJ) [15] is based on data
level interoperability. To manipulate C data, programmers use a library that
provides an ML encoding of the C type system (assuming the representa-
tion used by a particular C implementation). In this way, programmers can
manipulate C data structures directly from ML without having to marshal
large amounts of data. The ML types corresponding to the C types are im-
plemented using a library of unsafe operations that are not intended to be
used outside the FFI implementation. The library provides support for basic
types and arrays, while support for structure and union types is provided
by generating specialized definitions using an external tool. The library pro-
vides an encoding of numbers in ML’s type system and makes an extensive

2.3. DOMAIN SPECIFIC LANGUAGES 29

use of phantom types to distinguish different C types (e.g., arrays of different
sizes). In some situations, for example when performing pointer arithmetic,
programmers have to pass explicit type information specifying the sizes of
the C types involved in the computation.

Haskell has a well-defined FFI [21], which is an official addendum to the
language report [76]. Haskell’s FFI is very flexible and it has been used
in a number of applications. To deal with bitdata, it provides operations
for bit-twiddling, while to work with memory areas, it provides a variety of
different pointer types with associated operations. Haskell’s FFI operates at
a fairly low level of abstraction and, in general, it is unsafe because it supports
arbitrary pointer arithmetic. However, it is expressive enough to allow most
marshalling code to be written directly in Haskell, which is useful because it
can be used to build safer interfaces on top of the low-level primitives.

2.3 Domain Specific Languages

In this section, we review some domain specific languages (DSLs) that have
support for working with low level data.

Perhaps the most closely related domain specific language is Devil [62],
which is designed to describe interfaces to hardware devices. To interact
with a device, programmers write a Devil specification describing the device,
which is then processed by a tool to generate C code that can send and receive
data from the device. The Devil DSL identifies three important concepts:
ports, registers, and device variables. Ports are used to specify points of
interaction with a device. Registers specify the granularity of interaction with
the device. Programmers use ports to specify how to access and manipulate
various registers. Finally, the logical values that are to be communicated to
a device are specified with device variables, which can be stored in a part
of a register, or spread across multiple registers. In addition to these basic
concepts, Devil provides more advanced features that are useful when working
with some of the more exotic devices. Devil specifications are concise and
can be verified by the Devil implementation to detect specification errors.

Another DSL with a purpose similar to Devil is NDL [22], which de-
scribes device interfaces, but also uses state machines to describe higher level
protocols for interacting with a device.

In Chapter 1, we presented some examples of bitdata that are common
in systems programming. Another form of bitdata, which we shall not target

30 CHAPTER 2. RELATED WORK

in this dissertation, is the manipulation of streams of bits. Such bitdata
is often used when working with encryption or compression algorithms and
multimedia streams. A domain specific language that has good support for
working with such data is Cryptol [31], developed at Galois Connections,
and designed for working with cryptographic protocols. Another approach
for manipulating bit streams is described by Wallace and Runciman [99], who
use a file-like interface to manipulate bit-streams.

The concept of working with bit-streams is also used in the Specifica-
tion Language for Encoding and Decoding (SLED) [81], but in a more gen-
eral form. SLED is a domain specific language for working with streams of
machine language instructions, which is useful for developing tools such as
assemblers, linkers, and debuggers. Because, in general, instructions may
require multiple machine words, SLED processes a stream of tokens, which
can be of any size. SLED specifications partition tokens into a number of
fields, specified by a range of bits. Fields contain the different components of
machine instructions (e.g., the op-code). To recognize instructions, program-
mers define patterns, which can be combined using conjunction, disjunction,
or concatenation, while new instructions may be created using constructors.
SLED has a rich language for manipulating bitdata, and it also provides
special syntax to enable the concise specification of large instruction sets.

Another DSL for working with binary data is DataScript [6]. DataScript
specifications describe binary file formats as (dependent) types. These spec-
ifications are processed by a language binding, which produces a library that
can be used to read and write files in the given format. The types supported
by DataScript include basic types, arrays, structures, and (disjoint) unions.
The specification language has support for specifying the byte ordering of
multi-byte values. Fields in composite types may be annotated with con-
straints, which are used to validate the contents of fields, or to distinguish
between the alternatives in a union type. DataScript has been used to specify
the formats for a variety of binary data, including Java class files, network
packets, and fairly complex file formats, such as ELF.

Yet another DSL for working with data in predefined formats is PADS
[27], which is a DSL designed to process ad-hoc data. This includes both
binary data and textual data using various encodings. As such, it can handle
punctuation and delimiters, and it can deal with malformed data. In this
respect, the PADS tools resemble parser generators such Lex and Yacc, except
that they can both process incoming data and also produce outgoing data.
Its basic specification mechanism is similar to that of DataScript and other

2.4. SUMMARY 31

data description languages. This commonality was noticed and captured
in a dependently typed calculus [28], which can be used to provide a solid
semantic basis for data description languages.

2.4 Summary

We have examined a wide variety of high level programming languages that
have been studied, proposed, or used in the context of systems programming.
Our survey was biased towards issues of data representation: the mechanisms
that can be used by programmers to work with data with rigid constraints
on representation. Most languages abstract away from the representation of
data, and as a result make it difficult to write robust and correct systems
software: even veterans of systems programming, such as C, have to rely on
implementation specific behavior and extensions.

The goal of our work is to design a language mechanism that enables pro-
grammers to work safely with data that has rigid representation constraints.
At the same time, such data should coexist with the usual abstract data
that is common in most high level languages. Such a language mechanism is
particularly useful in the development of systems software.

32 CHAPTER 2. RELATED WORK

Chapter 3

Background: Type Systems

In this chapter, we provide a brief introduction to the style of type system
that we shall use extensively in this dissertation. The ideas in this chapter
are well known, and we present them here only for completeness. Readers fa-
miliar with type systems based on qualified types can safely skip the chapter,
although it may be useful to skim through the content to ensure familiarity
with our notation.

We shall present the ideas incrementally, by describing a series of simple
languages. In Section 3.1, we present the simply typed λ-calculus, which is
at the core of the system. In Section 3.2, we add support for Hindley-Milner
style polymorphism. In Section 3.3, we show how to restrict polymorphism
using qualified types. In Section 3.4, we describe the idea of improvement.
And, in Section 3.5, we show how to use kinds to check the correctness of
types.

3.1 The λ-calculus

The core of higher order functional languages is the (pure) λ-calculus [8],
which has the following syntax:

e = x Variable

| e e Function application

| λx .e Function value

This is a simple calculus that allows us to define and apply functions to
perform computation. The λ-calculus is expressive enough to encode Turing

33

34 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

machines and so, in principle, we could use it to write any program we want.
In practice, functional languages also contain a number of constants, as well
as various mechanisms to define values and introduce new constants. For
example, most functional languages provide built-in types for characters, in-
tegers, and floating point values, as well as mechanisms for defining algebraic
datatypes.

In the pure λ-calculus the only type of value we have is the function, and
the only operation is application. In practical functional languages, however,
we have many different types of values and associated operations. Naturally,
not all operations make sense for all values. For example, it does not make
sense to try to use the operation that adds integers on function values. We
use type systems to detect such malformed programs. Programs in statically
typed languages are analyzed for type errors before they are executed, while
programs in dynamically typed languages detect type errors at run-time. In
this work, we concentrate on statically typed languages.

Types. A type system associates types with the terms of a language (the
λ calculus in this case). Terms that do not have types are invalid and should
be rejected. The syntax of the types that we use is quite simple:

τ = τ τ Type application

| c Type constant

A type expressions is essentially a tree of type constants. The constants
correspond to built-in types. We assume the presence of a type constant (→),
used to write function types. We shall also use some type constants for basic
types: Int and Char for integers and characters respectively. For example, a
function that maps integers to characters has the type: (→) Int Char. We
adopt the convention that type (and expression) application is left associative
(e.g., F a b is the same as (F a) b). To improve readability we also write
(→) using an infix notation like this: Int → Char, which, when written as
an infix operator, is right associative.

Explicitly Typed Calculus. The above syntax for the λ-calculus does
not mention types—all typing information is implicit. There is an alternative
formulation, which requires that we annotate function arguments with their
types:

e ′ = . . . | λx :: τ. e ′

3.1. THE λ-CALCULUS 35

The implicit formulation is more convenient when we write expressions be-
cause we do not need to clutter the program with types, while the explicit
formulation is more convenient when we analyze programs because we can
easily compute the types of expressions.

Typing Environments. The type of an expression depends on the types
of the free variables that it mentions. For example, the type of the body of
a function depends on the types of the function arguments. To keep track of
the types of free variables we use a typing environment. It is common to use
the Greek letter Γ to refer to typing environments. A typing environment is
a partial map from variable names to types. We write Γ(x) = τ to assert
that the typing environment Γ associates the type τ with the variable x . We
write Γ, x :: τ for the environment that is like Γ, except that it maps x to τ .

Type System. We specify a type system for a language with a relation
that associates expressions with their types. In our presentation, we shall
also associate expressions in the implicitly typed calculus with expressions in
the explicit calculus. To define the typing relation, we use typing judgments
of the form:

Γ ⊢ e e ′ :: τ

Intuitively, a judgment of this form asserts that, if the the free variables of
an expression e have types as defined by the typing environment Γ, then the
expression e has type τ (and that e ′ is a fully annotated version of e).

There are three rules for constructing typing judgments, corresponding
to the different ways in which we can define expressions. The names of
the rules follow the convention used in systems based on natural deduction:
elimination rules are marked with E , while introduction rules are marked
with I .

Γ(x) = τ
[var]

Γ ⊢ x x :: τ

Γ ⊢ e1 e ′

1 :: τ1 → τ2 Γ ⊢ e2 e ′

2 :: τ1
[→ E]

Γ ⊢ e1 e2 e ′

1 e ′

2 :: τ2

Γ, x :: τ1 ⊢ e e ′ :: τ2
[→ I]

Γ ⊢ λx . e λx :: τ1. e ′ :: τ1 → τ2

36 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

3.2 Hindley-Milner Polymorphism

When we use the implicit λ-calculus, there are many expressions that have
more than one type. For example, the expression λx .x is a function whose
result is the same as its argument and so, for any type τ , it has the type
τ → τ . We say that such expressions are polymorphic.

The Hindley-Milner type system [63] enables us to work with such expres-
sions. The idea is to allow typing environments that associate free variables
with type schemes (σ) rather than just simple types.

σ = ∀α.σ | τ

τ = . . . | α

The variables in types (α) are place-holders for concrete types. When we
use a polymorphic value in a particular context, we instantiate it to concrete
types. The type of the resulting expression is obtained by replacing the type
variables in a type scheme with the concrete types. For example, a value like
λx .x will be associated with a scheme of the form (∀α. α → α), and if we
use it in a context where we need to apply it to an integer argument, then
we would instantiate it with the type Int to get Int → Int.

To define polymorphic values we use an additional new form of expression:

e ≡ . . . | let x = e in e

Using let, we can define polymorphic local variables: if the type of the ex-
pression defining x contains type variables that are not mentioned in the
environment (i.e., they can be anything at all), then we can generalize over
them to obtain a type scheme for x . As in the previous section, it is conve-
nient to have an explicit version of the language, where all local variable are
annotated with their schemes, and we make instantiation and generalization
explicit in the terms:

e ′ ≡ . . .

| let x :: σ = e ′ in e ′ Local variable

| e ′

τ
Instantiate

| Λα.e ′ Generalize

Here is an example of an expression in the explicit calculus:

let id :: α→ α = Λα.λx :: α.x in idInt 1

3.3. QUALIFIED TYPES 37

Notice that in the example we did not write the quantifier in the scheme for
id . This is just syntactic sugar, ‘free’ type variable are implicitly quantified.

The typing judgments for applying functions and creating function values
remain the same as in the previous section. The remaining rules are like this:

Γ(x) = σ
[lkp]

Γ ⊢ x x :: σ

Γ ⊢ e1 e ′

1 :: σ Γ, x :: σ ⊢ e2 e ′

2 :: τ
[let]

Γ ⊢
let x = e1 in e2

let x :: σ = e ′

1 in e ′

2 :: τ

Γ ⊢ e e ′ :: ∀α.σ[∀E]
Γ ⊢ e e ′

τ
:: σ[τ/α]

Γ ⊢ e e ′ :: σ[∀I] (α /∈ fvs Γ)
Γ ⊢ e Λα.e ′ :: ∀α.σ

Notice that these rules relate expressions to type schemes instead of simple
types. Perhaps the most interesting rule is ∀I , which creates a polymorphic
value. The side condition on this rule is crucial because, if a type variable is
mentioned in the environment, then it is part of the type of a free variable.
Therefore, this is not a truly generic variable, and hence, we are not free to
quantify over it.

3.3 Qualified Types

The Hindley-Milner type system allows us to instantiate a polymorphic value
at any type. This form of polymorphism is sometimes called parametric
polymorphism. In some situations, what we need is a way to restrict the
types that may be used to instantiate schemes. Consider, for example, adding
equality to the λ-calculus. One way to do this would be to add equality
functions as new constants (one for each type):

eqInt :: Int → Int → Bool

eqChar :: Char → Char → Bool

...

This approach works to a degree, but it is clumsy. For example, if we were to
write a function that is polymorphic in its arguments, except that it needs to
compare them for equality, then we would have to pass the equality operator
explicitly as an extra argument. Functional programs tend to involve a large
number of small functions that call each other, and so, if we were to use this
approach, then we would have to pass the extra equality operators manually
to all functions. Furthermore, because we cannot use the same equality

38 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

operator to compare values of different types, we may have to pass multiple
equality operators, which clutters polymorphic programs even more.

It would be nicer to use the same operator following the usual mathe-
matical convention. We could try to do this with a polymorphic equality
operator:

(==) :: a → a → Bool

Unfortunately, this is not quite correct because it suggests that we can test
values of any type for equality, but values of some types may not be easily
comparable for equality. For example, in general, equality on function values
is undecidable.

To solve this problem, we can use the theory of qualified types [48]. The
key idea in this approach is to introduce predicates on types (π), and to
augment schemes with predicates:

σ = . . . | π ⇒ σ

Now a scheme may be instantiated only at types that satisfy its predicates.
For example, using qualified types we can give (==) a more accurate type:

(==) :: (Eq a) ⇒ a → a → Bool

In this case (Eq a) is a predicate that can be discharged only for types that
support equality. In general, we specify how to discharge predicates, using
an entailment relation ⊢⊢:

Π ⊢⊢ p : π

Here Π is a set of assumptions, π is a predicate, and p is the evidence that
we can use to convince ourselves that π holds. For example, the evidence
that Eq τ holds might be a function of type τ → τ → Bool that we can
use to compare values of type τ . To add support for predicates to our type
system, we add a set of assumptions, Π, as an extra argument to the typing
judgments:

Π; Γ ⊢ e e ′ :: τ

To support qualified types we augment the explicit calculus with oper-
ations for evidence application and abstraction, which are analogous to the
instantiation and generalization operations that we added in the previous

3.3. QUALIFIED TYPES 39

section. This leads us to the final version of the explicit language:

e ′ = x Variable

| let x :: σ = e ′ in e ′ Local variables

| e ′ e ′ Function application

| λx :: τ.e ′ Function value

| e ′

τ
Type application

| Λα. e ′ Type abstraction

| e ′ · p Evidence application

| λ̄x :: π. e ′ Evidence abstraction

The full typing rules for the system are shown in Figure 3.1. There are
two rules that deal with qualified types. The first one is (⇒ E), which is part
of the instantiation judgments. We use it to instantiate variables that have
qualified schemes. The other rule is (⇒ I), and it is part of the generalization
judgments. We use it to introduce values with qualified schemes.

Notice that, in the presentation of the type system, we left the predi-
cates and the entailment relation unspecified. We did this because they are
parameters to the system. As we present our language design for systems
programming, we shall gradually introduce a number of predicates that will
complete the specification of the concrete type system for our language.

Implicit Arguments. The predicates introduced by the theory of quali-
fied types restrict the instantiation of ordinary Hindley-Milner schemes. We
obtain another useful way to understand the system, if we examine it through
the Curry-Howard isomorphism [90]. This establishes a correspondence be-
tween logic and programming that relates the predicates and proofs of a logic,
to the types and terms of a programming language (and vice versa). With
this in mind, we can think of the predicates in qualified schemes as the types
of the language defined by the evidence for the predicates. Thus, qualified
schemes resemble ordinary Hindley-Milner schemes with extra arguments.
Consider, for example, the type of the overloaded equality operator again:

(==) :: Eq a ⇒ a → a → Bool

Using the predicates-as-parameters interpretation, we can understand the
equality operator as a function that has three arguments instead of two:
the first (predicate) argument tells us how to compare the remaining two
arguments.

40 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

Γ(x) = σ
[var]

Π; Γ ⊢i x x :: σ

Π; Γ ⊢g e1 e ′

1 :: σ Π; Γ, x :: σ ⊢ e2 e ′

2 :: τ
[let]

Π; Γ ⊢
let x = e1 in e2

let x :: σ = e ′

1 in e ′

2 :: τ

Π; Γ ⊢ e1 e ′

1 :: τ1 → τ2 Π; Γ ⊢ e2 e ′

2 :: τ1
[→ E]

Π; Γ ⊢ e1 e2 e ′

1 e ′

2 :: τ2

Π; Γ, x :: τ1 ⊢ e e ′ :: τ2
[→ I]

Π; Γ ⊢ λx . e λx :: τ1. e ′ :: τ1 → τ2

Π; Γ ⊢ e e ′ :: ∀α.σ
[∀E]

Π; Γ ⊢ e e ′

τ
:: σ[τ/α]

Π; Γ ⊢ e e ′ :: σ
[∀I] (α /∈ fvs (Π, Γ))

Π; Γ ⊢ e Λα.e ′ :: ∀α.σ

Π; Γ ⊢ e e ′ :: π ⇒ σ Π ⊢⊢ p : π
[⇒ E]

Π; Γ ⊢ e e ′ · p :: σ

Π, x :: π; Γ ⊢ e e ′ :: σ
[⇒ I]

Π; Γ ⊢ e λ̄x :: π. e ′ :: π ⇒ σ

Figure 3.1: Type system for Hindley-Milner with qualified types.

3.3.1 Overloading in Haskell

Haskell’s class system [95, 76] provides a mechanism for defining overloaded
functions, and can be formalized using the theory of qualified types [48].
The design of Haskell uses class declarations to introduce new predicates
and instance declarations to extend the entailment relation.

In addition to introducing a new predicate, a class declaration defines a
number of methods, which are functions whose schemes are implicitly quali-
fied by the predicate introduced with the class. We can think of the methods
as the names for the evidence that is required to discharge the class predicate.
For example, the equality operation is defined in Haskell with the Eq class:

class Eq a where

(==) :: a → a → Bool

3.4. IMPROVEMENT 41

The first line introduces a new predicate Eq that has one parameter a, and
the second line indicates that the class has only a single method named (==).
There are instances for various Haskell types, for example:

instance Eq Int where

x == y = eqInt x y

instance Eq Char where

x == y = eqChar x y

The two instances state that we can discharge the predicate Eq for the types
Int and Char respectively. The method definitions provide the required evi-
dence.

We shall sometimes use Haskell’s notation for classes and instances as
a concise way to introduce and define predicates, functions, and the entail-
ment relation. Note that the entailment relation for the Haskell class system
is open, (i.e., it can be arbitrarily extended with new instances by program-
mers). In some parts of our design we use qualified types to enforce certain
properties of values, and so we do not allow programmers to add their own
instances: instead the implementation automatically provides instances when
they are safe and needed.

3.4 Improvement

Improvement [49] is a technique that uses information about the satisfiability
of predicates to infer more accurate types for expressions, and also to detect
expressions that are associated with schemes that can never be used.

Consider, for example, a predicate P that can be satisfied for just one type
τ . Then, if a variable x is associated with a scheme ∀α. P α ⇒ τ1, then we
can safely replace the universally quantified variable α with τ , because this
is the only type that satisfies P . This is beneficial to programmers, because
they get to work with simpler types. It is also beneficial to compilers because
they can exploit the extra type information to generate better code.

We can also use improvement for more accurate error reporting. Suppose,
for example, that we infer that some function f is of type ∀β. P τ2 ⇒ τ3,
with τ2 6= τ for any β. Technically, there is nothing wrong with f , but any
attempt to use it will result in a type error, because we will not be able
to discharge the predicate. By using improvement, we could detect that f

42 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

cannot be instantiated and report an error, or at least warn the programmer
about f ’s unusual type. Issuing a warning would be useful in a system where
the entailment relation is defined in different parts of the program, and the
type checker cannot be sure if a predicate really cannot be satisfied without
examining the entire program.

To formalize this idea, we need to consider the set of satisfiable instances
for a predicate:

⌊p⌋ = {q | ∃θ. (q = θp) ∧ (⊢⊢ q)}

In this definition, p is a predicate, θ is a substitution, and θp is the predicate
that we obtain when we apply the substitution to the predicate. Thus, ⌊p⌋
is the set of all instantiations of p that can be discharged with the given
entailment relation. For example, if ⌊p⌋ = {}, then we know that p cannot
be discharged, no matter how we instantiate its variables.

Of particular interest are substitutions that do not change the set of
satisfiable instances for a predicate. We say that such substitutions improve
the predicate:

improves θ p ≡ ⌊p⌋ = ⌊θp⌋

Improving substitutions can be used to eliminate variables from a typing
judgment without changing its meaning. This is formalized with the following
rule:

Π; Γ ⊢ e e ′ : τ improves θ Π
[improve]

θΠ; θΓ ⊢ e θe ′ : θτ

In general, it may be difficult for a type checker to compute improving
substitutions from the entailment relation for a language. To help out, a
language designer (or even the programmer) can specify improvement rules,
which we shall write using the following notation, following the original paper
on improvement [49]:

improve Π using {τ1 = τ ′

1; . . . ; τn = τ ′

n}

The variables in Π are implicitly universally quantified, and we can instan-
tiate improvement rules in different contexts. The resulting improving sub-
stitution is the combination of the most general unifiers of the equations in
the using clause. For example, we can can formalize the example from the
beginning of this section with a rule like this:

improve P α using α = τ

3.4. IMPROVEMENT 43

From a logical point of view, we can think of improvement rules as an
implication, stating that the equalities in the using clause are necessary for
the predicates Π to hold. In our language design we shall use a mixture
of axioms and improvement rules to specify the entailment relation for our
particular language.

It is important that the various improvement rules present in a system
are consistent (i.e., that they do not contradict each other). Here is a simple
example of two inconsistent rules:

improve P a using a = Int

improve P a using a = Char

While detecting conflicts of this form is not hard, checking for consistency
of improvement rules in general may require arbitrary logical reasoning, and
so is undecidable. For this reason, adding programmer defined improvement
rules to a language requires care. However, it is quite possible for an imple-
mentation to use improvement internally. For example, as we have already
mentioned, in Haskell the entailment relation is always open, in the sense
that implementations assume that there may always be new instances for a
class in modules that have not yet been examined. However, in some situa-
tions this is not case: for example, if a class is not exported from the module
where it is defined, then the only instances for the class would be in the
same module where the class was defined. An implementation could use this
to compute improvement rules that would enable it to infer more accurate
types, and to report errors early.

3.4.1 Functional Dependencies

Functional dependencies [51] provide a concise notation for introducing im-
provement rules. The idea of using functional dependencies originated in
relational algebras, which are used as a foundation for describing and query-
ing databases. It is always pleasing when well-established ideas in one field
of research turn out to be useful in seemingly unrelated areas!

There are many examples where functional dependencies come in handy,
which is why they have become a fairly popular extension to Haskell. To see
how they are typically used, consider defining a type class that enables us to
overload the numeric operations. In Haskell this is done with the Num class:

class Num a where

(+) :: a → a → a

44 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

...

instance Num Int where ...

instance Num Float where ...

This works well, but notice that addition (and other operations) require their
arguments and result to be all of the same type. Thus we can use (+) to add
integers to integers, and floats to floats, but adding floats to integers requires
explicit coercions. We could make the insertion of these coercions automatic
by using a multi-parameter class:

class Nums a b c where

add :: a → b → c

...

instance Nums Int Int Int where ...

instance Nums Int Float Float where ...

instance Nums Float Int Float where ...

instance Nums Float Float Float where ...

The class Nums has three arguments: two for the arguments, and one for the
result of the functions. In this way we can add floating point numbers to
integers. However, there is a problem. Suppose that we have two variables
x::Int, and y::Float. What is the type of add x y? At first, we might think
that the answer is Float because of the second instance. Unfortunately, the
expressions has a more general type:

add x y :: Nums Int Float c ⇒ c

While this extra generality may be useful in some situations, we quickly run
into a problem. Consider, for example, that we want to check if the sum of
x and y is 0. Because literals in Haskell are also overloaded (i.e., we can use
the same notation for 0::Int and 0::Float, which is very handy) we would
get the following strange type:

add x y == 0 :: (Nums Int Float c, Eq c) ⇒ Bool

Types like these are usually rejected by the system because they are ambigu-
ous: notice that the type variable c does not appear on the right hand side
of the ⇒ symbol, and so there is no way to determine from the context what
type should be substituted for c. The system cannot pick an arbitrary type,
because picking different types may result in completely different answers,

3.4. IMPROVEMENT 45

which would be very confusing for the programmer and the system would
not have a well-defined semantics.

We can work around this problem by using a functional dependency that
states that the types of the argument of the class uniquely determine the type
of the result:

class Nums a b c | a b c where

add :: a → b → c

..

instance ...

The new component is the functional dependency which is written after the
vertical bar in the class declaration. Specifying a functional dependency
amounts to adding a new improvement rule to the system. In this particular
example, the new rule is:

improve (Nums a b c1, Nums a b c2) using c1 = c2

In general, the improvement rule for a functional dependency ᾱ β̄ on a
class C has the form:

improve (C ᾱ β̄1,C ᾱ β̄2) using β̄1 = β̄2

To see how improvement is used by the system, consider again adding x and
y as in the previous example. Initially, the system infers the same type as
before:

add x y :: Nums Int Float c ⇒ c

However, from the instance rules we also know that Nums Int Float Float

holds. Therefore, we can apply the improvement rule to determine that c

must be Float, and thus (with an extra simplification step) obtain a nicer
type:

add x y :: Nums Int Float c ⇒ c

(improve)

add x y :: Nums Int Float Float ⇒ Float

(simplify)

add x y :: Float

46 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

3.5 Using Kinds

Another useful aspect of a type system is the kind system [7], which provides a
way to validate and classify types (i.e., the kind system is like a type system
for the language of types). Just as a type system ensures that the terms
(programs) written by a programmer are valid, a kind system ensures the
validity of types written by programmers.

Depending on the language in question, programmers may have to write
types for different reasons. For example, many popular programming lan-
guages (e.g., C and Java) do not support type inference, and instead re-
quire programmers to specify the types of all function parameters, variables,
and class attributes. Even in statically typed functional languages—such
as Haskell or ML—that have good support for type inference, programmers
need to write types. Examples include datatype definitions and explicit type
signatures.

Even in a language where the programmers do not need to write any
types, the kind system is quite useful as a check for implementations: for
example inferring a type that does not have a valid kind may indicate that
there is a bug in the implementation, which, without a kind system, might
have gone unnoticed.

Richer type systems often benefit from correspondingly richer kind sys-
tems. In languages with complicated type systems, one may go even further
and define a type system for the kind system itself. There are many varia-
tions on the theme: there are languages where the type system is the same as
the kind system; there are also languages that have infinitely many ‘levels’ of
type systems, each level (after the first) ensuring the validity of the previous
one. In our work, we adopt a fairly simple kind system, similar to the kind
system of Haskell:

κ = ∗ | . . . | κ→ κ

The only difference from Haskell’s kind system are some constants that we
shall discuss in later chapters. The kind * is used to classify ‘ordinary’ types
that contain values, while function kinds (of the form κ → κ) are used to
classify type constructors. For example, the kind of the type Int is *, because
it is an ordinary type that contains values. On the other hand, to represent
polymorphic lists we need to use a type constructor, List :: * → *. The
kind for List tells us that this constructor expects an ordinary type, such
as Int, as an argument, and that it will produce an ordinary type (i.e., the

3.6. SUMMARY 47

lists containing elements of the argument type). Thus the type List Int is a
valid type, while List List is not, and will be rejected by the kind system.

Another interesting example is the kind of the function space type con-
structor: 1

(→) :: * → * → *

This type constructor has two arguments, one for the domain of the function
and one for the codomain. It is interesting to note that, from the kind of
(→), we can see that we are working with a higher-order language: because
the result is of kind *, function types may appear as both arguments and
results to functions. As an example of how to use kinds, we show how we
might set up the kinds in a language that has first order functions that may
have multiple arguments. We can do this with two type constructors:

Arg :: * → Fun → Fun

Res :: * → Fun

Here, Fun is a new kind that classifies first order functions. Note that we did
not use * because functions are not ordinary values in this language. The two
constructors essentially describe non-empty lists of types, the last element
(tagged with Res) contains the result of the function, while the preceding
elements are the arguments to the function. For example, the type of a
first-order addition function on integers would be:

primAdd :: Arg Int (Arg Int (Res Int))

In our work we shall use two new kinds: Nat and Area. The kind Nat

classifies natural numbers in the type system, and it is discussed in Chapter
4. The kind Area classifies types that describe explicit memory areas, and it
is discussed in Chapter 9.

3.6 Summary

In this Chapter, we briefly described the basic language technology that is
used throughout this dissertation. We started with the λ-calculus, which lies
at the core of functional languages. We added a type system which was used

1Note that the arrow on the left of :: is quite different from the arrows on the right,

because it is a type constructor, while the arrows on the right are at the kind level.

48 CHAPTER 3. BACKGROUND: TYPE SYSTEMS

to detect malformed programs, and also a kind system which was used to
detect malformed types. We also described two generalizations to the simple
type system. The first one introduced Hindley-Milner style polymorphism,
which was used to assign type schemes to expressions that have multiple
simple types. The second extension allowed us to qualify type schemes with
predicates, in this way restricting the types that could be used to instantiate
the schemes. We also briefly outlined how these ideas are used in the type
system of Haskell, which is a pure functional language.

Chapter 4

Natural Number Types

Our design for working with data that has rigid representation constraints
makes an extensive use of natural numbers in the type system. These ‘types’
do not classify any values, but instead we shall use them as parameters to
other types to record statically known information (e.g., various sizes). For
example, we shall work with types such as Bit 8 that classify bit vectors of
size 8.

Using natural numbers at the type level is not a new idea and has been
used in many research systems [73, 101], although the use of type level nat-
ural numbers is quite restricted in mainstream programming languages. For
example, languages like C and Pascal have some built-in types that contain
numbers (e.g., arrays), but no support for polymorphism or user defined
datatypes that mention numbers. On the other end of the spectrum are
languages, such as Coq [12] or Cayenne [4], that support dependent types.
Such languages blur the distinction between types and values and as a result
programmers may use numbers in the types system. This increased expres-
siveness comes as the cost of a more complicated static analysis phase—in
particular, type inference is not well supported in many languages that utilize
dependent types.

In this chapter, we explore a different point the design space by show-
ing that the Hindley-Milner type system, augmented with qualified types
and support for improvement, provides a good framework for working with
numbers in the type system. The starting point for our design is the type
system that we summarized in Chapter 3. We extend the system with a set
of constants, as follows:

0,1,2,... :: Nat

49

50 CHAPTER 4. NATURAL NUMBER TYPES

(_ + _ = _) :: Nat → Nat → Nat → Pred

(_ * _ =)_ :: Nat → Nat → Nat → Pred

(GCD _ _ = _) :: Nat → Nat → Nat → Pred

(2 ^ _ = _) :: Nat → Nat → Pred

First we add a new kind, Nat, whose inhabitants are the natural numbers.
The remaining declarations specify the kinds of four new predicates that are
used to manipulate natural numbers. The kind Pred indicates that these con-
stants are predicates, and not ordinary types (we may think of the signatures
as class declarations that have no methods).

Each predicate corresponds to the usual mathematical operation (GCD
stands for greatest common divisor). For example, a predicate of the form
x + y = z is an assertion that the sum of x and y is equal to z. Thus, the
system can discharge the predicate 2 + 3 = 5, but will fail if it encounters
2 + 3 = 6.

4.1 Basic Axioms

The simplest way to discharge predicates on the natural numbers is when all
arguments are statically known constants. In that case, all we have to do
is check that the appropriate relation holds. We may think of these basic
axioms as an infinite family of instances:

instance 1 + 1 = 2

instance 1 + 2 = 3

...

instance 42 + 1 = 43

instance 42 + 2 = 44

...

We also need some axioms that deal with the various algebraic identities,
and allow us to solve predicates, even if some of the operands are variables.
Here are the rules that we used in our implementation, written as Haskell
instances:

instance 0 + a = a

instance a + 0 = a

4.2. COMPUTATION WITH IMPROVEMENT 51

instance 0 * a = 0

instance a * 0 = 0

instance 1 * a = a

instance a * 1 = a

instance GCD 0 a = a

instance GCD a 0 = a

instance GCD 1 a = 1

instance GCD a 1 = 1

instance GCD a a = a

Note that we have assumed that GCD 0 0 = 0 (which is quite common), oth-
erwise the rule GCD 0 a = a would not be valid.

4.2 Computation With Improvement

Of course, the system also needs to perform some computation. Using just
the basic axioms we cannot solve simple predicates like 2 + 5 = a. Why is
that? This predicate does not match any of the algebraic identities from the
previous section, and the only other predicates that we can discharge require
that there are no variables in the predicate.

We introduce computation to the system in the form of improvement
rules. The idea is that, when we encounter a predicate of the form 2 + 5 = a,
we can improve it to 2 + 5 = 7, which can then be discharged using the
basic axioms. It is interesting to note that, because we are working with
relations, we can also perform ‘backwards’ computation in the style of Prolog.
For example, we can improve 2 + a = 5 to 2 + 3 = 5. Next we present the
computational improvement rules that we used in our system (they are not
very surprising!). Because we have families of improvement rules (one for
every natural number really) in the rules below we adopt the convention that
x and y are used for concrete natural number types, while a and b are used
for type variables. For example, when we know the first two arguments of an
addition predicate we can improve the result:

improve 2 + 5 = a using a = 7

We shall write the family of rules of this form like this:

improve x + y = a using a = (x + y)

52 CHAPTER 4. NATURAL NUMBER TYPES

Note that the operator + is used in two different ways in the previous rule: on
the left-hand-side of the keyword using it is part of the name of the predicate
that is being improved, while on the right-hand-side it refers to the algebraic
operation on the natural numbers. Here are the remaining improvement rules
that define the operations:

improve x + a = y using a = (y - x) -- if x ≤ y

improve a + x = y using a = (y - x) -- if x ≤ y

improve a + b = 0 using a = 0; b = 0

improve x * y = a using a = (x * y)

improve x * a = y using a = (y / x) -- if x divides y

improve a * x = y using a = (y / x) -- if x divides y

improve 0 * a = b using b = 0

improve a * 0 = b using b = 0

improve a * b = 1 using a = 1; b = 1

improve GCD x y a using a = (gcd x y)

improve GCD 1 a b using b = 1

improve GCD a 1 b using b = 1

improve 2 ^ x = a using a = (2^x)

improve 2 ^ a = x using a = (log x) -- if log x is natural

4.3 Rules for Equality

The computational rules from the previous section are useful to turn ‘un-
known’ type variables to concrete natural numbers. It is also useful to have
some rules that establish equalities between different natural numbers. For
example, any two of the three variables in an addition predicate will uniquely
determine the third. We can represent this with a collection of functional
dependencies, { (a b c), (b c a), (c a b) } [51] and then use improve-
ment [49] to instantiate and simplify many of the addition predicates that are
generated during type inference. For example, if we encounter the following
pair of predicates (a + b = c, a + b = d) during type inference, then we
can conclude that c = d, and then use simplification to reduce the set to just
a single predicate (a + b = c). This is exactly what functional dependencies
enable us to do.

4.3. RULES FOR EQUALITY 53

We can also do similar things with multiplication a * b = c, greatest
common divisor GCD a b = c and power of two 2 ^ a = b predicates. Be-
cause all of them are functions, we have the ‘forward’ functional dependency
a b c (or a b for exponentiation). Unfortunately, not all operators are
injective functions, so we do not always have the ‘backward’ functional de-
pendencies. In particular, knowing the result and one of the arguments to GCD

tells us little about the other argument: GCD 3 5 = 1, but also GCD 7 5 = 1.
The situation is not quite as bad with multiplication, but multiplication
by 0 destroys the backward functional dependency: 1 * 0 = 0, but also
2 * 0 = 0. We can still do the backward improvement if we know that the
argument is not 0 (e.g., if it is a non 0 constant):

improve (a1 * k = c, a2 * k = c) using a1 = a2 -- if k not 0

improve (k * b1 = c, k * b2 = c) using b1 = b2 -- if k not 0

The exponentiation operator is injective, and so there we have both the
forward and backward dependencies.

In addition to the functional dependencies, we also have some other im-
provement rules that enable us to infer equalities between types. We list the
ones that we used in our implementation below:

improve 0 + a = b using a = b

improve a + 0 = b using a = b

improve a * 1 = b using a = b

improve 1 * a = b using a = b

improve GCD 0 a = b using a = b

improve GCD a 0 = b using a = b

improve GCD a a = b using a = b

4.3.1 Expressiveness of the System

The rules for equality between natural numbers are by no means complete,
but work well for the constraints that arise in many practical programs.
There are a couple of reasons to explain why this happens. The first is the
application domain where we use the type level natural numbers: typical
programs do not require complex proofs because often programs tend to be
fairly monomorphic, and we can discharge predicates by evaluating them.
The other reason is that, in many situations, using the improvement rules is

54 CHAPTER 4. NATURAL NUMBER TYPES

optional: by using improvement we can infer more concise types, or detect
type errors a little sooner, so it is clearly advantageous, but it is not necessary.
For example, inferring a type like (2 + 3 = x) ⇒ Bit x is not as concise as
inferring Bit 5, but the program will not fail, or be less useful. Another way
to put this is that we can delay predicates that we cannot solve immediately
by placing them in inferred schemas. Later, when the schema is instantiated
at concrete types, we can attempt to solve the predicates again.

The only situation where we cannot delay the predicates is when we work
with type signatures. For example, suppose a programmer specifies a signa-
ture:

f :: P ⇒ T

Now, if we infer the type T for f, but under the assumptions Q , then we would
have to prove that P ⊢⊢ Q , before accepting the program. This requires a
form of automated theorem proving that may, in some cases, be too difficult
for the type inference engine.

In many cases, if the system cannot prove a certain goal, it is not hard
to alter the program so that it is accepted by the system. Typically, a
programmer might have to add an explicit type signature, or alter an existing
type signature.

More practical experience with the system will be required to determine
if we need to add more rules to the system. There certainly are more options.
For example, we could encode the commutativity and associativity of addition
using rules like these:

improve (a + b = c, b + a = d) using c = d

improve (a1 + a2 = a12, a12 + a3 = a123,

a2 + a3 = a23, a1 + a23 = a123’)

using a123 = a123’

Other rules that are presently missing from the system are rules that
relate the various operations to each other. For example, if we have the
predicates (2 * a = b, a + a = c), the system could conclude that b = c.
Here is how we could encode a distributivity rule:

improve (b + c = bc, a * bc = d,

a * b = ab, a * c = ac, ab + ac = d’)

using d = d’

4.4. OTHER OPERATIONS 55

Note that some of the more complex rules become a little complex to write
using just the basic, three place predicates. In the next chapter, we present a
notation that allows us to write such formulas using the usual notation, and
to have the system translate it automatically to this primitive notation.

At present, it is not clear if some of the more complex rules are useful in
practice. If practical experience shows that we do need a more sophisticated
predicate solver, then there are a few topics that we would like to explore in
future work. One obvious direction is to try to integrate the type checker of
the programming language with an external tool that is specifically designed
for solving problems with natural numbers. There are well-known decision
procedures that can deal with Presburger arithmetic (essentially equations
that just have addition). Another interesting direction of research would be
to devise an efficient algorithm for finding and applying improvement rules.
The simple algorithm that we used in our implementation is quite inefficient
and is not likely to scale well if it has to deal with many rules, especially of
the more complex variety with many predicates in the assumption part.

4.4 Other Operations

The operations on the natural numbers that we have presented so far are
sufficient for our design of a language extension for systems programming.
Of course, we could add some operations that could be potentially useful to
programmers. However, adding a new predicate is not a trivial task because
we have to add enough rules to the system so that the new predicate can be
useful.

In this section we show how we can obtain some more operations ‘for free’
(i.e., without having to add more rules to the system). The main observation
is that we can use the natural number predicates in ‘reverse’ to get relations
for subtraction, division, and logarithm with base two. For example, we can
express the constraint that x - y = z, by writing z + y = x instead.

4.4.1 Predicate Synonyms

To make such definitions a little easier to work with, we introduce a small
generalization to Haskell. In Haskell, programmers can use type declarations
to introduce shorter names for complex type expressions. For example, we
can declare:

56 CHAPTER 4. NATURAL NUMBER TYPES

type Parser a = String → Maybe (a, String)

Then, writing Parser Int in a type is exactly the same as using the function
type on the right-hand side of the = except that the resulting program is
shorter and probably easier to read.

Type synonyms are not restricted to types of kind *, but can have any
kind (i.e., we can have type synonyms that expand to type constructors).
In the same spirit, we allow type synonyms of kind Pred, which essentially
introduce different names for predicates. This is quite a small change, which
does not introduce major technical difficulties. Using this extension (and a
bit of syntactic sugar) we can define some more operations in terms of the
ones we have already presented:

type (x - y = z) = (z + y = x)

type (x / y = z) = (z * y = x)

type (Log2 x = y) = (2 ^ y = x)

The new predicates work mostly as one might expect, serving as the inverses
of the functions that we have already defined. When one of these predicate
synonyms appears in a type, the system can simply replace it by its definition
and then use the old rules to handle the resulting constraints.

One interesting point about these definitions is that division is not quite
a function. As we have already discussed in Section 4.3, multiplication is not
injective and so its inverse is a proper relation rather than a function. This
shows up in just one (rather unusual) case, when we divide 0 by 0. Following
the above definition 0 / 0 = z is the same as z * 0 = 0, which can be solved
trivially. Thus, 0/0 can be any number at all.

Chapter 5

Notation for Functional
Predicates

In this chapter, we introduce syntactic sugar that is useful when working
with predicates constrained by functional dependencies. In Section 5.1, we
present the basic idea, together with some examples of why it is useful. In
Sections 5.2, 5.3, 5.4, and 5.5, we describe the effect of the syntactic sugar on
the different parts of a Haskell program that contain types. In Section 5.6, we
show how our idea is related to the proposal for associated type synonyms.
In Section 5.7, we summarize the key ideas of this chapter.

5.1 Overview

In Chapter 4, we described the kind Nat of natural numbers and we formalized
the operations on Nat as relations between arguments and results. We noted,
however, that the relations were all functional, which was captured with
functional dependencies stating that the arguments uniquely determine the
result.

While the relational notation has its uses, it can get a bit unwieldy in
some situations. We already saw examples of this when we specified a rule
to formalize the associativity of addition:

improve (a1 + a2 = a12, a12 + a3 = a123,

a2 + a3 = a23, a1 + a23 = a123’)

using a123 = a123’

This rule is a lot less readable than the usual statement of associativity:

57

58 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

improve using (a + b) + c = a + (b + c)

We can use the more readable notation if we introduce an addition function
to the type language. Attractive as this might appear, the introduction of an
associative, commutative function into the type language makes type infer-
ence much more complicated. Furthermore, we cannot completely replace the
three-place addition predicate with the two-place addition function because
the latter cannot express constraints like x+y=3.

Fortunately, there is a way to have our cake and eat it too! We can
treat the second improvement rule above as a purely syntactic abbreviation
for the first: any expression of the form a+b in a type can be replaced with
a new variable, c, so long as we also add a predicate (a+b=c) to our set of
assumptions. For example, in the following chapters we shall introduce a type
for bit vectors called Bit. This type is parameterized by the width of the
bit vectors. Then, using this translation, we can write Bit n → Bit (n+2)

as a shorthand for (n+2=m) ⇒ Bit n → Bit m. The same notation can also
be used with the other predicates described previously. As another example,
here is how we can completely desugar the nice looking associativity rule into
the expanded form.

improve

using (a + b) + c = a + (b + c)

⇒
improve (a + b) + c = v1

using v1 = a + (b + c)

⇒
improve (a + b = v2, v2 + c = v1)

using v1 = a + (b + c)

⇒
improve (a + b = v2, v2 + c = v1, a + (b + c) = v3)

using v1 = v3

⇒
improve (a + b = v2, v2 + c = v1, a + v4 = v3, b + c = v4)

using v1 = v3

In fact, we can generalize this idea to arbitrary predicates with functional
dependencies. If P t1 . . . tn tn+1 is an (n + 1)-place predicate in which the
last argument is uniquely determined by the initial arguments, then we will
allow an expression of the form P t1 . . . tn in a type as an abbreviation for
some new variable, a, subject to the constraint P t1 . . . tn a. Note that,

5.2. TYPE SIGNATURES AND INSTANCES 59

because of the functional dependency, this translation does not introduce
any ambiguity. For example, if the expression P t1 . . . tn appears twice in a
given type, then we will initially generate two constraints P t1 . . . tn a and
P t1 . . . tn b. However, from this point, we can use improvement to infer
that a = b and then to eliminate the duplicated predicate.

This simple technique gives us the conciseness of a functional notation
in many situations, without losing the expressiveness of the underlying rela-
tional predicate. We will use this abbreviation notation quite frequently in
the following chapters, and we expect that it will prove to be useful in other
applications beyond the scope of this work. Our approach is similar to the
‘functional notation for functional dependencies’ suggested by Neubauer et
al. [71], but it is more general (because it admits multiple dependencies) and
it does not require any changes to the concrete syntax of Haskell other than
support for functional dependencies.

The notation for functional predicates introduces new qualifiers to types.
In the following sections we examine the various Haskell declarations that
may contain types and describe how these new assumptions are handled in
each case.

5.2 Type Signatures and Instances

The assumptions arising from the abbreviations in the type part of a type
signature or an instance are added to the context for the signature or instance
declaration. Because signatures and instance declarations all have contexts,
there are no technical difficulties here. Consider, for example, the following
instance:

instance C (Bit (1 + n)) where ...

This is simply an abbreviation for the instance:

instance (1 + n = x) ⇒ C (Bit x) where ...

The Importance of Contexts. Despite the fact that there are no techni-
cal difficulties, our translation may transform a type signature that appears
to be fully polymorphic into one that is qualified by a context. For example:

f :: Bit n → Bit (n+2)

60 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

appears to be a fully polymorphic function, but after removing the functional
predicate notation we obtain:

f :: (n + 2 = m) ⇒ Bit n → Bit m

In some situations this is important, in particular in implementations that
use dictionary passing [95] to implement qualified types. In such implemen-
tations, a predicate context is translated into extra function arguments. As a
result, overloaded values are represented with functions that produce different
results depending on their evidence arguments. For example, the following
definition introduces an overloaded numeric value.

two :: (Num a) ⇒ a

two = 2

A dictionary passing implementation would represent two as a function, and
when it is used in different contexts this function would be applied auto-
matically to (possibly) different arguments. Thus, in an integer context, the
implementation would supply the evidence for Num Int, while in a floating
point context it would supply the evidence for Num Float. This may affect
the performance of a program because an overloaded value may be computed
multiple times instead of being computed just once and then saved. Indeed,
concerns like this motivated the (somewhat controversial) introduction of the
monomorphism restriction to Haskell [76], which requires programmers to
write explicit type signatures on overloaded values that do not syntactically
appear to be functions.

Note that not all implementations of overloading suffer from this problem.
For example, our implementation eliminates all overloading at compile time
by generating specialized versions of polymorphic functions. In particular,
overloaded values such as two from the previous example are evaluated only
once for each different context in which they appear. It is also possible
to achieve similar behavior in dictionary passing implementation by using
optimizations (e.g., multiple instantiations with the same evidence may be
eliminated by a form of common sub-expression elimination).

5.3 Contexts

It is quite possible that a syntactic abbreviation is used in the argument of
a predicate. In such situations we add the extra assumptions to the context

5.3. CONTEXTS 61

that contains the predicate. This works well for the contexts in type sig-
natures and instances, as well as the improvement rules that we have been
using. In Haskell 98, predicates in the context of a class declaration may con-
tain only type variables, which disallows the use of our abbreviation notation
in such situations.

Types in Class Contexts Several Haskell implementations support an
extension to the type system that allows arbitrary types in the contexts of
class declarations. This works in a similar fashion to ordinary (Haskell 98)
super classes. For example, programmers may write:

class C [a] ⇒ D a where ...

This declaration states that, whenever we can discharge the predicate D τ ,
then we should also be able to discharge C [τ]. More formally, we get the
following new axiom:1

∀a. D a ⇒ C [a]

Usually, implementations enforce this by proving the goal C [τ], for every
instance D τ in the program.

The super-class axiom is used to simplify the contexts in qualified types,
as well as in situations when we have to check if a user specified type matches
the inferred type for a declaration. For example, we may simplify the context
(D a, C [a]) to just (D a), because the predicate C [a] is implied by the
super-class axiom.

With this extension, the context of a class declaration may contain types
that make use of the abbreviation notation. For example, we might write the
following class declaration:

class P (x + y) ⇒ C x y where ...

Then, if we eliminate the functional predicate notation we would get the
following declaration:

class (x + y = z, P z) ⇒ C x y where ...

1 Notice that if we think of ⇒ as an implication symbol, then Haskell’s notation for

super classes is backwards: the logical implication is in the opposite direction from the

class declaration.

62 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

Notice that now the context contains a new variable, z, which is not men-
tioned in the class head (i.e, to the right of the symbol⇒). In current Haskell
implementations such declarations are rejected, and so we may not use the
abbreviation notation in the contexts of class declarations. The problem is
the interaction of functional dependencies and class contexts, and next we
examine the issues and some possible design choices.

Super Classes and Functional Dependencies. Consider the following
declarations:

class F a b | a b

class F a b ⇒ C a

instance F Int Bool

The second class declaration here is interesting because the context of C

contains a variable b that is not in the class head. Should this be allowed,
and if so, what does it mean? There are several possible answers.

One option would be to extrapolate directly from the current behavior of
class contexts in Haskell. This results in adding the following axiom:

∀a,b. C a ⇒ F a b

While there is nothing inherently wrong with the axiom, it disallows us from
defining any instance for C. Consider, for example, an instance like the fol-
lowing:

instance C Int

Before we can accept this declaration, we would have to check that it does
not violate the super-class axiom, and so we would have to prove that:

∀b. F Int b

We cannot do this because the functional dependency on F states that F Int b

holds for exactly one type (in this case b=Bool). Our goal, however, is to show
that F Int b holds for all types, and so we fail. By a similar argument, we
would have to reject any attempt to provide an instance of C, and so we could
never discharge a predicate involving C. Notice that this has to be the case
because an instance for C would render the system unsound in the presence
of the stated super-class axiom. Consider, for example, a function of the
following type:

5.4. TYPE SYNONYMS 63

f :: (F a b, C a) ⇒ a → b

Now, using the super-class axiom, we may simplify the type of f to:

f :: (C a) ⇒ a → b

These types look quite different: in the first type we had a relation between
a and b that was captured by F, but in the second type b is completely
unconstrained. The only way to justify such a transformation would be if
there were no instances for C (i.e., in logical terms we have assumed false).
From this discussion we see that, with the proposed super-class axiom, we
may never define instances for the class and for this reason we should probably
report an error, thus rejecting the declaration.

An alternative design would be to use the following super-class axiom:

∀a.∃b. C a ⇒ F a b

The difference here is that we use an existential quantifier for variables that
are mentioned in the class context but that do not appear in the class head.
This axiom permits us to define instances for C. For example, we may accept
an instance for C Int, because we can solve ∃b.F Int b, using the instance
F Int Bool. On the other hand, we would reject an instance like C Char

because there is no way to solve ∃b. F Char b. An interesting observation
about this form of the super-class axiom is that we cannot use it for con-
text simplification. For example, we cannot simplify (F a b, C a) to (C a)

because we cannot be sure that the b in the context is the same as the one
‘hidden’ by the existential.

In conclusion, the second design choice is more useful because it enables
programmers to use super-classes to control the valid instances for a class.

5.4 Type Synonyms

Haskell’s type synonyms provide a convenient mechanism for introducing
names for type expressions. Haskell 98 type synonyms do not support con-
texts, and so we would not be able to use the functional notation in the
definitions of type synonyms. This is unfortunate, because we have found
many examples where it is convenient to use the functional notation in a
type synonym. In this section, we show that this limitation can be avoided
by generalizing the type synonym construct of Haskell to support contexts.

64 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

Our generalization is based on an observation that relates type synonyms
to Haskell’s class system. First, note that we can think of a type synonym as
a simple (first order) function on types. However, the functional dependency
extension to Haskell also provides a way to define functions on types. It is
then natural to ask if we can encode type synonyms using functional depen-
dencies. It turns out that this is fairly easy to do. Consider the following
type synonym declaration:

type T a = τ

Here, a is a parameter to the type synonym2, and τ is a type expression that
may mention a. As a function on types, T maps the argument a to the value
τ . We can define the same function by using functional dependencies with
the following two declarations:

class T a b | a b

instance T a τ

The class declaration specifies that T is a type function of the appropriate
arity, while the instance declaration provides the definition for the type func-
tion. Now we can use the functional predicate notation to write T A in a
type (where A is some type expression). This will be expanded to a new
variable b, subject to the constraint T A b, which can then be discharged by
using the above instance, thus substituting τ[A/a] for b. Essentially what
happens is that we have expanded the type synonym. This shows that that
the two definitions are equivalent. We are not suggesting that implementa-
tions should implement type synonyms by using the class system (although
they could!), because implementations often try to delay expanding type syn-
onyms as much as possible so that the synonyms can appear in types that
are visible to the programmer (e.g., inferred types or type errors).

One technical point on this topic is that Haskell has a rather ad-hoc way
of handling polymorphic kinds: they are simply monomorphised by replacing
kind variables with *. Because of this, splitting a type synonym into a class
declaration and an instance might result in the inference of the wrong kind
if declarations are processed one at a time. We could avoid this either by
generalizing Haskell’s type system to support polymorphic kinds, or simply
by delaying the kind monomorphization until we have checked the instance
defining the type synonym.

2We use a single parameter to avoid clutter, but the same development works for

multiple parameters as well.

5.4. TYPE SYNONYMS 65

5.4.1 Type Synonyms with Contexts

The observation that type synonyms can be encoded in the type system is
useful because it shows us how to safely generalize type synonyms in several
ways. In particular, we get a simple and consistent semantics for type syn-
onyms with contexts, which are needed to support the functional predicate
notation:

type C ⇒ T a = τ

is equivalent to:

class T a b | a b

instance C ⇒ T a τ

More concretely, consider the following example:

type Eq a ⇒ EqList a = [a]

This declaration defines the name EqList to refer to the types of lists whose
elements belong to the Eq class (i.e., the elements can be compared for equal-
ity). The class system translation of this declaration is:

class EqList a b | a b

instance Eq a ⇒ EqList a [a]

Now consider how we can use this type synonym:

elem :: a → EqList a → Bool

elem x xs = ...

The type signature would be desugared using the following steps:

elem :: a → EqList a → Bool

-- expand notation

elem :: EqList a b ⇒ a → b → Bool

-- improvement with instance

elem :: (Eq a, EqList a [a]) ⇒ a → [a] → Bool

-- context reduction using instance

elem :: Eq a ⇒ a → [a] → Bool

Essentially what happens is that using a type synonym with a context ap-
pends the instantiated context of the synonym to the appropriate set of
assumptions (following the same rules that we use for functional predicates).

66 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

5.5 Data Types

Haskell’s data declarations are used by programmers to define new types.
Each data declaration specifies a list of constructors, and each constructor
may contain a number of fields. If we allow the functional predicate notation
to be used in data declarations, then we need a context that can store the
extra assumptions that are introduced by the notation. Haskell 98 already
supports contexts on data types, and so we will start by examining how these
work.

Consider the following datatype declaration that has a context:

data Eq a ⇒ EqList a = Nil | Cons a (EqList a)

In Haskell 98 [76], this declaration introduces a new type EqList (of kind
* → *), and the constructors Nil and Cons with the following types:

Nil :: EqList a

Cons :: Eq a ⇒ a → EqList a → EqList a

Notice that some of the constructors inherit (parts of) the context. The rule
is that the context of a constructor contains only the predicates that restrict
the types of the constructor’s fields. This is why Cons is qualified by the Eq

constraint, while Nil is not.
In the Haskell 98 semantics for overloaded constructors, the evidence

supplied to overloaded constructors is not stored with the newly constructed
value. This is why overloaded constructors generate extra constraints corre-
sponding to their context when they are used in patterns. Here is an example
that illustrates this behavior:

elem :: (Eq a) ⇒ a → EqList a → Bool

elem _ Nil = False

elem x (Cons y ys) = x == y || elem x ys

The Haskell 98 data declarations cannot support the functional predicate
notation because the only variables that may appear in their context and
fields are the datatype parameters, whereas the translation of our notation
may introduce new type variables. Fortunately, it is not hard to extend
Haskell 98 to avoid this problem. We use the fact that the new type variables
are determined by the datatype parameters and the functional dependencies
on the predicates in the context. This is important because it ensures that
the datatype constructors do not have an ambiguous type. As an example,
consider the following declarations:

5.5. DATA TYPES 67

class F a b | a b

data T a = C (F a)

In the definition of T, we used the abbreviation F a, which would be desugared
to the following code:

data (F a b) ⇒ T a = C b

Notice that we have introduced a new variable b, but it is determined from
the parameter a via the functional dependency on F. The constructor C has
the following type:

C :: (F a b) ⇒ b → T a

The type variable b appears in the arguments to C but not in the result so it is
essentially existentially quantified. Apart from that, the qualified constructor
behaves as it would in a Haskell 98 data declaration with context:

getField :: (F a b) ⇒ T a → b

getField (C x) = x

5.5.1 Constructor Contexts

Using a single context for the abbreviations arising from all constructors
leads to some constructors getting types that are more complicated than is
perhaps necessary. Consider, for example, a declaration like the following:

class F a b | a b

class G a b | a b

data T a = C1 (F a) | C2 (G a)

Following the rules that we have so far, this would result in the following
types for the constructors:

data (F a b1, G a b2) ⇒ T a = C1 b1 | C2 b2

C1 :: (F a b1, G a b2) ⇒ b1 → T a

C2 :: (F a b1, G a b2) ⇒ b2 → T a

68 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

Notice that both constructors get both predicates from the context, which
makes the types more complicated than they need to be. This happens be-
cause we are using a single context for the entire datatype. To avoid the
mixing of predicates relating to the different constructors we could make an-
other small change to Haskell 98 so that each constructor in a datatype can
have its own context. This is useful because it gives more control to the
programmer to specify exactly how types should be constrained. Further-
more, if we use the functional predicate notation, then we can constrain each
constructor by only the predicates that arise from abbreviations used in its
own fields. For example, this is what would happen if we were to use this
approach on the previous example:

data T a = (F a b1) ⇒ C1 b1 | (G a b2) ⇒ C2 b2

C1 :: (F a b1) ⇒ b1 → T a

C2 :: (G a b2) ⇒ b2 → T a

Of course, if we pattern match with multiple constructors, then we still get
the union of the predicates on the constructors in the patterns.

5.5.2 Storing Evidence

So far, we have followed Haskell 98’s design choice for contexts on data types,
in that constructors do not store the evidence for their contexts with the
newly constructed value. The immediate effect of this is that using construc-
tors in patterns adds additional constraints to the type of the function that
performs the pattern matching. Another design choice would be to store the
evidence with the value, which is similar to what happens with constraints
on existentially quantified variables [56, 65, 19]. This would eliminate the
need to add extra constraints to functions that perform pattern matching
because the evidence will be provided as a part of the the argument that is
being examined, which results in simpler looking types. For example, recall
the type EqList:

data Eq a ⇒ EqList a = Nil | Cons a (EqList a)

elem x Nil = False

elem x (Cons y ys) = x == y || elem x ys

If we adopt the semantics where constructors store evidence with the con-
structed values, then we get the following types:

5.5. DATA TYPES 69

Nil :: (Eq a) ⇒ EqList a

Cons :: (Eq a) ⇒ a → EqList a → EqList a

elem :: a → EqList a → Bool

There is no extra Eq constraint on the function elem because the evidence
that a belongs to class Eq is packaged together with the list value, and we can
access it when we pattern match on the argument. It is interesting to note
that even if we package values with their evidence, there are situations where
we may require identical evidence to be passed separately to a function. This
may occur if we need to use the evidence before pattern matching on a value.
For an example, consider the following function:

knownName x y env

| x == y = True

| otherwise = elem y env

This function uses the equality operator before examining the EqList argu-
ment env. It cannot use the evidence stored in the env argument because
there is no guarantee that this argument has been evaluated. Therefore, we
infer the following type for knownName:

knownName :: (Eq a) ⇒ a → a → EqList a → Bool

If we use this design, then there is also an interesting interaction between
constructors and predicates with functional dependencies. We can illustrate
the problem with an example:

class F a b | a b

data (F a b) ⇒ T a = C a b

-- C :: (F a b) ⇒ a → b → T a

f (C _ b) = b

What is the type of f? If we use the semantics where constructors do not
store evidence, then we get:

f :: (F a b) ⇒ T a → b

However, if we use the semantics where constructors store the evidence, we
do not have the extra predicate to relate the type of the parameter to T to
the type of the result of the function.

70 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

The paper that introduced the idea of using functional dependencies in
the Haskell class system [51] suggests that it may be useful to give names
to functional dependencies. It seems that such a feature may help with the
above problem. If the name of the functional dependency on F is u, then we
could give f the following type:

f :: T a → u a

Then we would need to extend the system further so that it can check equal-
ities between types including this new form of type. It seems likely that such
a system would use some sort of constraint capturing equality between types,
and indeed there is some recent research in this direction [86]. The idea of
named functional dependencies is also closely related to the idea of associated
type synonyms [20], which we shall discuss in more detail in the next section.

5.6 Associated Type Synonyms

Recently, there was a proposal to allow type synonyms to be associated with
Haskell’s type classes [20]. For example, this is how we could define a class
that captures some general operations on graphs using associated type syn-
onyms:

type Edge g = (Node g, Node g)

class Graph g where

type Node g

outEdges :: Node g → g → [Edge g]

In this example, g is a type that represents graphs, Node g is the type of the
nodes in the graph, and outEdges is a function that computes the outgoing
edges from a given node in the graph. The novel component here is the
associated type synonym Node g. When programmers define instances of the
class Graph, they need to define the type Node g as well as the method in the
class.

type AdjMat = Array (Int,Int) Bool

instance Graph AdjMat where

type Node AdjMat = Int

outEdges = ...

The essence of the idea is that Node is a function on types whose domain
is restricted to types that are in the Graph class. Every instance of Graph

provides another equation for the type function Node.

5.6. ASSOCIATED TYPE SYNONYMS 71

Using Abbreviations. We can achieve something very similar by using
ordinary functional dependencies and the notation for functional predicates.
We will illustrate this by showing how the graph example can be recoded
this way. First, we define a type function called Node that has graphs as its
domain:

class Graph g ⇒ Node g n | g n

Next, we define the Graph class pretty much as before:

class Graph g where

outEdges :: Node g → g → [Edge g]

Note that using the abbreviation Node g makes the type of outEdges look
just like the type that we get when we use associated type synonyms. The
desugared type of outEdges is like this:

outEdges :: Node g n ⇒ n → g → [Edge g]

Defining instances for the Graph class is also very similar:

instance Node AdjMat Int

instance Graph AdjMat where

...

The encoding used here is entirely mechanical: given a class with some asso-
ciated type synonyms, we define the class in the same way as we would if we
had associated type synonyms, except that we replace each associated type
with a new class that has a functional dependency and the original class as
a super class.

This representation allows us to attach constraints to the associated type
synonyms if we need them. For example, suppose that we wanted to state
that all graphs should have nodes that are in the Eq class. We can modify
the Node function to capture such a constraint:

class (Graph g, Eq n) ⇒ Node g n | g n

The only difference from before is the Eq constraint on n. The proposal for
associated type synonyms [20] does not provide this feature, although it could
probably be extended along the same lines that we have shown here.

72 CHAPTER 5. NOTATION FOR FUNCTIONAL PREDICATES

5.7 Summary

In this chapter, we have described some syntactic sugar and mild extensions
to Haskell 98 that is useful in programs that use predicates with functional
dependencies. The idea uses the fact that classes with functional dependen-
cies introduce new type functions, which are defined by the instances of the
class. With this in mind, we allow programmers to write partially applied
predicates directly in types, and then leave it to an implementation to replace
these with appropriately constrained type variables.

In the process of describing how this idea interacts with various Haskell
constructs that contain types, we proposed several small extensions to Haskell
98, including contexts on type synonyms and class contexts that contain
variables, which are not in the class head.

Finally, we showed how our notation—together with functional dependencies—
can achieve expressiveness similar to associated type synonyms. All of these
proposals would be subsumed by a mechanism for defining (perhaps con-
strained) functions at the type level.

Chapter 6

A Calculus for Definitions

In this chapter, we present a calculus for reasoning about programs that
contain a rich definitional language, including patterns, pattern bindings,
and functions defined with multiple equations. We use this calculus in two
ways: (i) to define the semantics for the new patterns that we shall introduce
in later chapters; and (ii) as an intermediate language for our compiler. While
some of the components of the calculus are novel (e.g., guarded patterns), it
resembles many of the intermediate languages found in the literature and in
existing functional language implementations.

6.1 Overview

Modern functional languages typically use a rich definitional language that
enables programmers to present fairly complex decision trees in a concise
and readable form. Functions are commonly defined using a sequence of
definitional equations that involve pattern matching. The left hand sides
of these equations use patterns to specify when we should use a particular
equation, while the right hand sides specify the result to be computed once
an equation has been chosen. For example, consider the following definition
from Haskell’s Prelude:

filter p [] = []

filter p (x:xs)

| p x = x : rest

| otherwise = rest

73

74 CHAPTER 6. A CALCULUS FOR DEFINITIONS

where

rest = filter p xs

This definition defines a function called filter that has two arguments. The
first argument is a predicate called p, and the second argument is a list. The
function filter traverses the list and constructs a new list that contains
only those elements of its argument, that satisfy the predicate p. The first
equation deals with the case where the argument list (and hence the result) is
empty, written here as []. The second equation deals with lists that have an
element, x, at the front, followed by another list, xs. For such lists we need to
consider two cases, here encoded with guards, which start with a vertical bar.
Both guards may refer to the local variable rest, which recursively processes
the rest of the list. The first guard is used when x satisfies the predicate p,
and the second guard is used when it does not.

We can translate this definition into our calculus without too much diffi-
culty:

filter = { p → [] → return []

8 p → (x:xs) → let rest = filter p xs;

(if p x; return (x:rest)

8 if otherwise; return rest

)

}

Note that the two definitions are fairly similar and, indeed, this was our
intention. As we shall see in the rest of this chapter, the calculus satisfies a
number of laws that can be used to transform terms systematically. In this
way, we can give semantics to rather complex definitional constructs, and
also encode transformations, such as pattern matching compilation.

As a starting point for our calculus, we assume a language that has ex-
pressions and simple declarations (i.e., declarations that just give names to
expressions). As usual we shall use a type system to weed out syntactically
correct, but otherwise malformed constructs in the language. For expressions,
we use judgments of the form:

Γ ⊢expr e : τ

As we have discussed in Chapter 3, the typing judgments for a language with
qualified types need an additional environment, Π, for the set of assumptions
that we can use to discharge predicates. To avoid clutter we omit Π from

6.2. MATCHES 75

the judgments in this chapter. For declarations we shall assume judgments
of the form:

Γ ⊢decl d : ∆

This asserts that, in a typing environment Γ, d is a well-formed declaration
that defines the variables described by the typing environment ∆.

In addition to expressions and declarations our calculus contains three
more syntactic categories:

• Matches (discussed in Section 6.2) are like expressions that support
pattern-matching failure. They have typing judgments of the form:

Γ ⊢mat m : τ̄ → τ

• Qualifiers (discussed in Section 6.3) are like declarations that are aware
of pattern-matching failure. They have typing judgments of the form:

Γ ⊢qual q : ∆

• Patterns (discussed in Section 6.4) are used to examine and name val-
ues. They have typing judgments of the form:

Γ ⊢pat p : τ → ∆

After we discuss these constructs, Section 6.5 shows how to integrate the new
constructs into the expressions and declarations of the basic language.

6.2 Matches

We use matches to describe function definitions and pattern bindings. Pat-
tern bindings provide another way to define values. A pattern binding is
like a normal value definition except that the left hand side of the definition
may contain a pattern. If the pattern matches the value of the right hand
side of the definition, then the variables in the pattern are introduced to the
run-time environment, otherwise the program terminates prematurely (in a
lazy language, the termination would be delayed until one of the values is
actually used). The syntax for matches is as follows:

76 CHAPTER 6. A CALCULUS FOR DEFINITIONS

mat = pat → mat -- argument

| qual ; mat -- guard

| mat 8 mat -- alternatives

| return expr -- success

From the grammar, we can see that a match is a decision tree with forks at the
8 symbol. The paths through the tree contain patterns (pat) and qualifiers
qual. Each path is terminated with a match of the form return expr. The
patterns on a branch indicate arguments to the function that is being defined,
and so all paths should contain the same number of patterns. The branching
construct, 8, is left-biased, which means that we explore alternatives from left
to right. Decisions in the tree are made either by patterns, which examine
function arguments, or by qualifiers, which can perform arbitrary decisions
based on variables that are in scope.

As we have already mentioned, not all syntactically valid matches are
well-formed. The main well-formedness constraints are that the different
alternatives in a match should all have the same number of arguments (of
the same type), and that all alternatives should choose an expression of the
same type. This is why the types for matches have the form τ̄ → τ . As
usual, the list of types before the arrow keeps track of the arguments to the
match, while the type after the arrow is for the result of the match (note that
this arrow is different from the function type in the language). With this in
mind, the typing rules for matches are straightforward (see Figure 6.1).

Γ ⊢pat p : τ → ∆ Γ, ∆ ⊢mat : τ̄1 → τ2

Γ ⊢mat p → m : (τ, τ̄1)→ τ2

Γ ⊢qual q : ∆ Γ, ∆ ⊢mat m : τ̄1 → τ2

Γ ⊢mat q ;m : τ̄1 → τ2

Γ ⊢mat m1 : τ̄1 → τ2 Γ ⊢mat m2 : τ̄1 → τ2

Γ ⊢mat m18m2 : τ̄1 → τ2

Γ ⊢expr e : τ

Γ ⊢mat return e : ()→ τ

Figure 6.1: Typing rules for matches.

6.2. MATCHES 77

Denotationally, the meaning of a match Γ ⊢mat m : τ̄1 → τ2 is a function
of type JΓK× Jτ̄1K→ M Jτ2K. Here, M is some monad that supports raising
and handling exceptions. A simple example would be Haskell’s Maybe monad,
which would be sufficient for a pure language. Because, in general, matches
may evaluate expressions, the choice of the monad in the semantics of matches
is ultimately dependent on the monad that is used to give semantics to the
rest of the language. We may capture this by using a monad transformer
[59]: if the expression language is given semantics in a monad N , then we
could use the monad ExceptT N to give semantics to the matches of the
language. Computations in ExceptT N differ from computations in N in that
a computation may fail to produce a result, indicating that pattern matching
failed.

Another interesting observation about the semantics of matches is that the
monad appears in only one place in the type of the semantic function. This
indicates that a match examines all the arguments at the same time, before
making a decision. This is in contrast to a type like a → M (b → M (c → M d)),
which would examine the arguments one at a time.

In general, we expect matches to satisfy a number of laws. For example,
the operation 8 should be associative. Also, once we make a successful choice,
we never try any other alternatives, which is captured by the equation:

(return e) 8 m = return e

Note that, because 8 is left-biased, the symmetric version of this rule is not
valid. There are other useful equations about the behavior of matches in our
framework, including the following distributivity properties:

q ; (m18m2) = (q ;m1)8(q ;m2)

p → (m18m2) = (p → m1)8(p → m2)

Such equations (if viewed as rewrite rules from right to left) are quite useful
for pattern-matching compilation. Note that these equations would not hold
in a language with side effects whose duplication may be observed, because
on the left-hand-side we have a single occurrence of q and p, while on the
right-hand side we have two such occurrences.

78 CHAPTER 6. A CALCULUS FOR DEFINITIONS

6.3 Qualifiers

We use qualifiers to make decisions and also to introduce new names to the
environment. Qualifiers are described by the following grammar, and the
typing rules for qualifiers are in Figure 6.2.

qual = pat ← expr -- pattern guard

| if expr -- guard

| let decl -- declaration

| qual ; qual -- sequencing

The most interesting qualifier is the pattern guard [24], which has the
form p ← e. A pattern guard succeeds if the expression e evaluates to a
value that matches the pattern p. If this is the case, the variables defined
by p are introduced to the environment, otherwise the pattern guard fails.
For example, if e is some expression that evaluates to the value Just 2, then
the pattern guard Just x ← e succeeds and binds x to 2. Alternatively, if e
evaluates to Nothing, then the pattern guard fails.

Pattern guards enable us to make arbitrary decisions. Decisions can also
be made with ordinary guards of the form if e that take a Boolean expression,
and succeed if it evaluates to True, or fail otherwise. There is a close relation
between guards and pattern guards. If the language supports a pattern to
recognize the value True, then we can define guards as a special form of a
pattern guard:

if e ≡ True ← e

Qualifiers marked with the keyword let cannot fail. They are used to
introduce new names to the current scope. We may also compose qualifiers,
using ; (semicolon).

Denotationally, we may think of a qualifier of type ∆ as a function of type
JΓK→ M J∆K where M is the same monad that we used for the semantics of
matches.

The reader may have noticed that we used the same notation for sequenc-
ing of qualifiers, as we used for separating qualifiers and matches. This is
justified by the following rule relating qualifiers and matches.

(q1; q2);m = q1; (q2;m)

The fact that let qualifiers cannot fail justifies a rule that enables us to move
let qualifiers in and out of expressions:

let d ; return e = return (let d in e)

6.4. PATTERNS 79

Γ ⊢pat p : τ → ∆ Γ ⊢expr e : τ

Γ ⊢qual p ← e : ∆

Γ ⊢decl d : ∆

Γ ⊢qual let d : ∆

Γ ⊢expr e : Bool

Γ ⊢qual if e : {}

Γ ⊢qual q1 : ∆1 Γ, ∆1 ⊢qual q2 : ∆2

Γ ⊢qual q1; q2 : ∆1, ∆2

Figure 6.2: Typing rules for qualifiers.

6.4 Patterns

Patterns provide a way to make decisions by examining a value. Different
languages have different pattern forms, and there have even been proposals
for user-defined patterns. In this section, we shall restrict ourselves to a
tiny set of patterns that would be useful in many languages. The syntax of
patterns is specified by the following grammar, and the typing rules are in
Figure 6.3.

pat = x -- variable

| (pat | qual) -- guarded pattern

Variable patterns are standard and, because they match any arguments
without examining them, they never fail. Guarded patterns, on the other
hand, are more unusual, but they provide a flexible way to examine values.
A value matches a guarded pattern (p | q), if it matches p and, in addition,
it also satisfies the tests specified by the qualifier q. We may think of a
guarded pattern as a qualifier with a parameter.

In a denotational framework, a pattern of type τ → ∆ is a function of
type JΓK × JτK → M J∆K. Again, the monad M is the same as the one in
matches and qualifiers. There are two equations that relate guarded patterns

80 CHAPTER 6. A CALCULUS FOR DEFINITIONS

Γ ⊢pat x : τ → {x : τ}

Γ ⊢pat p : τ → ∆1 Γ, ∆1 ⊢qual q : ∆2

Γ ⊢pat (p|q) : ∆1, ∆2

Figure 6.3: Typing rules for patterns.

to matches and qualifiers:

(p | q)→ m = p → (q ;m)

(p | q)← e = (p ← e); q

Nesting of guarded patterns corresponds to sequencing of qualifiers, as illus-
trated by the following equation:

((p | q1) | q2) = (p | q1; q2)

Using this basic framework, we can add other pattern forms that are
common in modern functional languages. For example, a numeric literal
pattern can be easily represented as a guarded pattern like this:

k ≡ (x | if x == k)

In this definition, k is a numeric literal, and x is a new variable that we use
to name the argument to a function. Notice that guarded patterns are more
general than ordinary guards because they allow us to have guards nested
within other patterns. Ordinary guards in Haskell may only appear at the
end of each definitional equation.

A slightly more advanced form of numeric pattern is the so called (n + k)

pattern:

n + k ≡ (x | if x >= k; let n = x - k)

This definition shows us precisely how (n+k) patterns work: first we check
that the argument is greater than the literal k and, if so, then we bind
the variable n to the new value. In Haskell, k has to be a literal. But, as
this equation shows, we could easily extend this to also allow an arbitrary
expression.

Haskell’s as patterns (written with @) also fit naturally in this framework:

6.5. EXPRESSIONS AND DECLARATIONS 81

x @ p ≡ (x | p ← x)

We can even add algebraic patterns in a similar fashion, assuming the
presence of suitable primitives that can: (i) distinguish between values cre-
ated with different constructors; and (ii) project fields from constructors. If
we have patterns for algebraic datatypes, then we can use our language to
write down rules that essentially perform pattern matching compilation. For
example, here is a rule that shows how to simplify algebraic patterns:

C p1 p2 ≡ (C x y | p1 ← x; p2 ← y) -- if defs(p1) not in fvs(p2)

The side condition states that variables defined by p1 should not be men-
tioned in the free variables of p2. In many functional languages, patterns
do not contain free variables at all, so the side condition would be trivially
satisfied.

Rules like the previous one are useful because they make many details
of how patterns work explicit. For example, we can see that the fields in
a constructor are examined from left to right. Such details are important
in languages like Haskell because the order in which patterns are examined
determines the order of evaluation of the program, and so it may affect the
termination properties of the program. They are also important in impure
languages because then the order of evaluation determines which side effects
are executed.

6.5 Expressions and Declarations

In general, different languages have different expressions and declarations.
To integrate matches and qualifiers with expressions and declarations, we
add a new expression and a new declaration:

expr = { mat } -- match

| ... -- other expressions

decl = { qual } -- qualifier

| ... -- other declarations

The new expression enables us to embed matches within expressions, and the
new declaration enables us to use qualifiers as declarations.

An expression of the form {m} evaluates the match m and, if the matching
is successful, then the result of the expression is the result of the match. If

82 CHAPTER 6. A CALCULUS FOR DEFINITIONS

the match fails, then the value of the expression is undefined. In a strict
language, this would result in the program terminating early, while, in a lazy
language, the termination may be delayed until the value of the expression
is used.

Declarations of the form {q} behave in a similar fashion. The values de-
fined by the declaration are the same as the values defined by the qualifier. If
the qualifier succeeds, then all values are defined as expected. If the qualifier
fails, then the values introduced to the environment are undefined. In a strict
language a failure of the qualifier would result in a run-time pattern match
failure, similar to what happens if a function is not defined for all possible
input arguments.

As we discussed previously, matches and qualifiers are given semantics
with the aid of a monad that supports exceptions. We may think of the
braces, {_}, as an operation that “eliminates” the failure component of the
monad, by turning it into undefined values. In a denotational semantics,
such values are represented with the bottom element of the relevant domain
(i.e., the element that contains no information). Note that, in the case of
qualifiers, environments are given semantics as an element of an unlifted
product of domains, and so the bottom element is a tuple that contains the
bottom elements for each of the values that are being defined.

The braces are not necessary when there is no possibility of failure. We
can capture this observation with the following equations:

{return e} = e

{let d} = d

6.5.1 Simplifying Function Definitions

Recall the definition of filter from the beginning of this chapter:

filter = { p → [] → return []

8 p → (x:xs) → let rest = filter p xs;

(if p x; return (x:rest)

8 if otherwise; return rest

)

}

We can now apply the rules of the calculus to simplify this definition. For
example, we can factor the patterns p out of the branches of the 8. By using

6.5. EXPRESSIONS AND DECLARATIONS 83

a bit of inlining, we notice that otherwise is simply defined to be True, and
so we do not need the second guard in the nested 8. This would make it easy
for a tool that analyzes definitions to notice that the definition of filter is
exhaustive, and to infer that the program will not crash at run-time due to a
pattern match failure. Another useful transformation that an implementation
might do is to pick explicit names for the arguments of the function. This
could be achieved with a rule like this (it is interesting to note that this rule
resembles the η rule of the λ calculus):

p = (x | p ← x)

We should mention one small detail concerning rules like this one that
introduce new variables: If we look carefully at the types of the patterns
on the left and right hand side of the equation, we notice that they differ.
This happens because the types of the patterns contain the variables that are
defined by the pattern, and on the right-hand side we have an extra variable.
It is a bit unusual to state equalities between values that are of different
types, but what we mean is that the two patterns are the same, except for
the newly introduced variable. One way to fix that would be to introduce an
explicit operator that delimits the scope of the variables defined by patterns.

By using the naming rule together with the other rules in the calculus, an
implementation could systematically eliminate matches of the form p → m

by first naming all patterns:

p → m

= (naming)

(x | p ← x) → m

= (guarded pattern in match)

x → (p ← x) ; m

Variable patterns are a lot more “mobile” then other patterns because they
don’t make any decisions. In particular, we can move them across qualifiers
(so long as no name capture occurs):

q ; x → m = x → q ; m -- if x not in fvs(q)

This, together with the distributivity rule for patterns, enables us to move
all arguments to the beginning of a match. Finally, we can use a rule that
allows us to move variable patterns out of matches (assuming that we have
function expressions):

84 CHAPTER 6. A CALCULUS FOR DEFINITIONS

{x → m} = λx.{m}

If we apply these transformations to the example with the definition of
filter, then we get the following result, which is useful for generating code.

filter = λp. λys. { [] ← ys; return []

8 (x:xs) ← ys;

let rest = filter p xs;

(if p x; return (x:rest)

8 return rest) }

6.5.2 Pattern Bindings

We can also use our calculus to encode pattern bindings. The most common
form of a pattern binding is:

pat = expr

We can express this directly in our calculus with a declaration like this:

{ pat ← expr }

In addition to ordinary pattern bindings, Haskell also supports more exotic
pattern bindings as illustrated by the following example:

(version,name)

| debug = (1, name ++ " (DEBUG)")

| otherwise = (2, name)

where name = "Program"

This is a pattern binding that uses guards, and it has a local definition.
Notice also that the local definition shadows one of the names that is being
defined. The corresponding expression in our calculus is:

{ (version,name) ← { let name = "Program"

; (if debug; return (1, name ++ " (DEBUG)")

8 if otherwise; return (2, name)) } }

In a similar fashion, we can also represent Haskell’s lazy patterns in the
calculus. These patterns are unusual because, unlike other Haskell patterns,
they do not force evaluation. Instead, they behave like a pattern binding and
succeed immediately. The check if an argument matched the pattern is only
performed when the value of one of the bound variables is demanded. If the
pattern match fails at this point, then the program crashes. We can make
all of this explicit in the calculus like this:

6.6. SUMMARY 85

~p ≡ (x | let { p ← x })

Here is an example that uses the calculus to show that we never need to
use a lazy pattern in a pattern binding:

~p = e

= (defn of pattern binding)

{ ~p ← e}

= (defn of lazy pattern)

{ (x | let { p ← x }) ← e}

= (simplify guarded pattern)

{ x ← e; let { p ← x } }

= (pattern guard-let)

{ let x = e; let { p ← x } }

= (let sequence)

{ let (x = e; { p ← x }) }

= (let does not fail)

x = e; { p ← x }

= (inline x)

{ p ← e }

= (definition of pattern binding)

p = e

6.6 Summary

In this chapter, we have presented a calculus that is useful for manipulating
and understanding the various definitional constructs in a modern functional
language. The calculus is rich enough to support a direct encoding of ad-
vanced definitional constructs. We have identified a number of equational
laws that enable us to simplify expressions in the calculus in a systematic
fashion.

In this dissertation, we use the definitional calculus to give precise se-
mantics for the new pattern-matching constructs that are described in later
chapters. In addition, we used a variant of this calculus as an intermediate
language for the prototype implementation that we developed to experiment
with our design.

86 CHAPTER 6. A CALCULUS FOR DEFINITIONS

Part II

Language Design

87

Chapter 7

Working With Bitdata

In this chapter, we explain how a modern functional language like ML or
Haskell can be extended with mechanisms for specifying and using bitdata.
Our design provides fine-control over the choice of low-level representation
while also supporting the higher-level programming notations and constructs
that are associated with strongly typed, algebraic datatypes. The original
motivation for this work grew out of two ongoing projects using Haskell for
device driver and operating system implementation, respectively. We have
strived, however, for a general approach that is broadly compatible with any
modern functional language, and also for a flexible approach that is useful in
many different application domains1.

This chapter is structured as follows: In Section 7.1, we present an
overview of our design, which has two components:

• Support for working with bit vectors is described in Section 7.2,

• Support for user-defined bitdata types is described in Section 7.3.

We discuss the interaction between these two components in Section 7.4.

1The material in this Chapter is based on: Iavor S. Diatchki, Mark P. Jones, and

Rebekah Leslie. High-level Views on Low-level Representations. In Proceedings of the

Tenth ACM SIGPLAN International Conference on Functional Programming, pages 168–

179, Tallinn, Estonia, September, 2005.

89

90 CHAPTER 7. WORKING WITH BITDATA

7.1 Overview of the Approach

Algebraic datatypes promote a high-level view of data that hides many low-
level implementation details. We can easily create new values using con-
structor functions, while pattern matching provides a way to inspect val-
ues without concern for their underlying, machine-level representation. We
would like to provide programmers with the same flexibility for manipulating
bitdata types. But how will a compiler determine the appropriate external
representation for the type? Looking again at the examples from Chapter 1,
it is easy to construct the following algebraic datatypes for PCI addresses,
the L4 Time type, and for the Z80 encoding of bit twiddling instructions:

data PCIAddr = PCIAddr { bus::Int8, dev:: Int5, fun :: Int3 }

data Time = Now

| Period { e::Int5, m::Int10 }

| Never

data BitOp = Shift {shift::S, reg::R}

| BIT {reg::R, n::Int3}

| RES {reg::R, n::Int3}

| SET {reg::R, n::Int3}

data S = RLC | RRC | RL | RR | SLA | SRA | SRL

data R = A | B | C | D | E | H | L | MemHL

While it is possible that we might be able to infer the correct layout for
types like PCIAddr, it is clear that the general case requires a more expressive
notation for specifying bitdata representations. For example, there are no
indications in these definitions alone that Time values should be represented
using 16 bits; that Now and Never should be coded as special cases of Period;
that the bit pattern 110 should not be used in the encoding of S; or that
the bit pattern 111 should be used to represent A instead of the bit pattern
000. To address these issues, we present a new approach to specifying and
working with bitdata that is structured as two language extensions called bit
vectors and user defined bitdata.

Bit Vectors. Bit vectors support basic, bit-level manipulation with a fam-
ily of primitive Bit n types, a syntax for bit literals, and a # operator that
can be used both for concatenating bit values and, in the context of pattern

7.1. OVERVIEW OF THE APPROACH 91

matching, splitting bit values. The following examples give a brief flavor of
the programs that we can write with this language extension:

mkPCIAddr :: Bit 8 → Bit 5 → Bit 3 → Bit 16

mkPCIAddr bus dev fun = bus # dev # fun

bitOpType :: Bit 8 → Bit 2

bitOpType (tag # args) = tag

Programs like this can be parsed, type checked, and executed using hobbit

(a higher-order language with bit-level data), which is a prototype compiler
that we have built to test and evaluate our bitdata extensions. The following
extract shows how the mkPCIAddr and bitOpType functions might be used in
an interactive session with hobbit (the > character is the hobbit prompt):

>show (mkPCIAddr 1 6 3)

"B0000000100110011"

>show (bitOpType 0x7f)

"B01"

The output from these examples also shows the syntax that is used for bit
literals; an initial B followed by a sequence of binary digits.

User Defined Bitdata. User defined bitdata adds a mechanism for defin-
ing new bitdata types that are distinguished from their underlying represen-
tation. In special cases, the layout of these bitdata types can be inferred
from the way that the type is written. For example, our system will infer the
intended 16 bit representation of a PCIAddr from the following definition:

bitdata PCIAddr = PCIAddr { bus::Bit 8, dev::Bit 5, fun::Bit 3 }

In general, however, it is necessary to specify layout explicitly by annotating
each constructor with an appropriate as clause. The following definition
shows how the Time type can be described in this notation.

bitdata Time = Now as B0 # 1 # (0::Bit 10)

| Period { e::Bit 5, m::Bit 10 } as B0 # e # m

| Never as 0

Note that the representation for Never is written simply as 0; the fact that a
sixteen-bit zero is required here is inferred automatically from the other two
as clauses.

92 CHAPTER 7. WORKING WITH BITDATA

The representation for Z80 bit twiddling instructions can be described in
a similar way. In this case, we must specify the appropriate bit patterns for
each of the constructors in the enumeration types S and R.

bitdata BitOp = Shift { shift::S, reg::R } as B00 # shift # reg

| BIT { reg::R, n::Bit 3 } as B01 # reg # n

| RES { reg::R, n::Bit 3 } as B10 # reg # n

| SET { reg::R, n::Bit 3 } as B11 # reg # n

bitdata S = RLC as B000 | RRC as B001 | RL as B010 | RR as B011

| SLA as B100 | SRA as B101 | SRL as B111

bitdata R = A as B111 | B as B000 | C as B001 | D as B010

| E as B011 | H as B100 | L as B101 | MemHL as B110

With these definitions, we can construct byte values for different Z80 instruc-
tions using expressions like Shift{shift=RRC, reg=D} and SET{n=6, reg=A},
but attempts to construct encodings using arguments of the wrong type—as
in SET{n=6, reg=B010}—will be treated as type errors, even in cases where
values might otherwise be confused because they have the same number of
bits in their representation.

Our system also includes generic toBits and fromBits operators that can
be used to convert arbitrary bitdata to and from its underlying bit-level repre-
sentations, and to provide a connection between the two language extensions.
These are generalizations of the toPCIAddr and fromPCIAddr operations that
were described in Section 1.3.2. The following example shows how the first
of these function can be used to inspect the bit pattern for one particular
Z80 instruction:

>show (toBits (SET{n=6, reg=A}))

"B11111110"

7.2 Bit Vectors

We introduce a new type constant called Bit (of kind Nat → *) that we use
to type bit sequences. In other words, Bit is a type constructor that, given
a natural number, produces the type of bit sequences of the corresponding
length. For example, bytes are 8-bit sequences and have type Bit 8.

7.2. BIT VECTORS 93

We focus on manipulating bit sequences that will fit in the registers of a
CPU or a hardware device. It is therefore desirable to restrict the lengths
of bit sequences that can be used in a program. Furthermore, operations
on bit vectors of different sizes behave differently: for example, addition
is performed modulo the size of the bit-vector, so (bitAdd 3 3 = 6) in 8
bits, but (bitAdd 3 3 = 2) in 4 bits. For these reasons, instead of providing
operations that are completely polymorphic in the sizes of the bit-vectors,
we use qualified types and overload the operations:

class Width n where

bitEq :: Bit n → Bit n → Bool

bitCompareU :: Bit n → Bit n → Ordering

bitCompareS :: Bit n → Bit n → Ordering

bitAdd :: Bit n → Bit n → Bit n

bitAnd :: Bit n → Bit n → Bit n

bitFromInt :: Integer → Bit n

...

Bit vectors are equipped with all the usual operations that one might ex-
pect. In practice, an implementation would provide instances for the bit
vector widths that it supports (typically up to the size of a machine regis-
ter MaxWdith, but in principle an implementation could provide support for
larger bit vectors as well):

instance Width 0 where ...

instance Width 1 where ...

instance Width 2 where ...

...

instance Width MaxWidth where ...

Programmers do not need to work with the built-in bit operations directly.
Instead, we could use the standard Haskell classes (for example) to provide
a more conventional interface for working with bit vectors. Here is how we
could define the instance for Haskell’s class Eq:

instance Width n ⇒ Eq (Bit n) where

x == y = bitEq x y

We may provide similar instances for a number of Haskell classes (e.g. Read,
Show, Ord, Bounded, etc.), so that programmers may use bit vectors just
like any other type that belongs to the relevant class.

94 CHAPTER 7. WORKING WITH BITDATA

Some of the operations on bit vectors come in different flavors. For ex-
ample, if we think of bit vectors as binary representations for numbers, then
it makes sense to order and compare them. However, the same bit pattern
might represent different numbers depending on the encoding. For example,
it is common to distinguish between signed and unsigned numbers. Thus, if
we think of 3 bit vectors as unsigned numbers, then 010 (i.e., 2) is smaller
then 100 (i.e., 4). However, if we think of them as signed numbers, then we
are comparing 2 with -4 and so we get a different result.

For this reason, in the built-in operations, we provide two different com-
parison operators (bitCompareU and bitCompareS). However, if we want to
provide a bit vector instance for Haskell’s Ord class, then we have to pick
one of them (e.g., bit vectors represent unsigned numbers). To provide in-
stances for the other encoding we may use a new type that is isomorphic to
the bit-vector types. For example:

newtype SignedBit n = Signed (Bit n)

instance Width n ⇒ Ord (Bit n) where

compare x y = bitCompareU x y

instance Width n ⇒ Ord (SignedBit n) where

compare x y = bitCompareS x y

Having a separate type for signed numbers is handy independent of Haskell’s
class system because the type explicitly indicates if we intend to work with
signed or unsigned numbers.

7.2.1 Literals

One way to introduce a bit sequence in a program is to use a binary literal.
This notation is useful when a bit vector is used as a name, for example, to
identify a device, a vendor, or perhaps a particular command that needs to
be sent to a device. A binary literal is written as a B followed by a number in
base two. An n digit binary literal belongs to the type Bit n, as long as n is a
valid width (i.e., it belongs to the Width class). Leading zeros are important
because they affect the type of the literal. Here are some examples of binary
literals, and the corresponding types:

> :t B11

Bit 2

7.2. BIT VECTORS 95

> :t B011

Bit 3

> :t B000000000000000000000000000000000

FAIL

33 is not a valid width

This example uses the :t <expr> command in hobbit to show the type of
an expression. In our implementation, the largest allowed width is 32, so the
last example is not type correct because there are 33 zeros in the literal.

Binary literals may be used in both expressions and patterns. Indeed,
we may think of Bit n as a kind of algebraic datatype that has the n-digit
binary literals as constructors. For example:

data Bit 3 = B000 | B001 | B010 | B011 | B100 | B101 | B110 | B111

The only exception is the case when n = 0, where the name of the constructor
is NoBits. To be consistent, we could have used the name B for the inhabitant
of this type but we found that this can be confusing in practice.

It is often convenient to think of bit sequences as numbers and we intro-
duce numeric literals to accommodate this. An interesting challenge is to
allow numeric literals for all types of the form Bit n, without introducing
a baroque notation. We do this by overloading the notation for octal, hex-
adecimal, and decimal literals, as in Haskell [76]. The trick is to define an
instance of Haskell’s Num class using the primitive function:

bitFromInt :: Width a ⇒ Integer → Bit a

A numeric literal n in the text of a program, can then be treated as syntactic
sugar for the constant fromInteger applied to the value n of type Integer.
Usually the type of an overloaded literal can be inferred from the context
where it is used. If this is not the case, programmers can use a type signature
to indicate the number of bits they need. Numeric literals may also be used
in patterns and will match only if the argument is a value that is the same
as the literal. Here are some examples that illustrate how literals work:

> :t 1

(Num a) => a

> :t bitAnd 1 B00110000

Bit 8

96 CHAPTER 7. WORKING WITH BITDATA

Notice that, when used on its own, the literal 1 has a polymorphic type—the
system is telling us that 1 belongs to any numeric type. However, if used
in a particular context, as in the second example where an 8 bit literal is
required, then 1 will be converted to the appropriate type using the function
fromInteger.

7.2.2 Joining and Splitting Bit Vectors

Another common programming task is joining and splitting bit sequences.
The usual way of doing this is to use shift and mask operations to get bits
into the correct positions. This is a complicated way to achieve a conceptually
simple task, and it is all too easy to shift a bit too much, or to use the wrong
bit mask. To make this task simpler, we introduce the operator (#) to join
sequences. One way to type this operator is like this:

(#) :: Bit a → Bit b → Bit (a+b)

Notice that we use the notation for functional predicates here, as described in
Chapter 5. In its desugared form, the type of (#) has a constraint indicating
that we are essentially working with an overloaded operator:

(#) :: (a + b = c) ⇒ Bit a → Bit b → Bit c

We could use an operator of this type to join bit sequences of any type.
While in principle this is possible, we introduced the predicate Width, so that
implementations can control the sizes of the bit-vectors that they support.
To be consistent with this design, we give (#) a slightly different type:

class (Width a, Width b, Width c, a + b = c)

⇒ (a # b = c) | a b c, b c a, c a b where

(#) :: Bit a → Bit b → Bit c

Here is the full type of the method (#):

(#) :: Bit a → Bit b → Bit (a # b)

We can discharge the predicate (#), as long as the bit vectors involved
have acceptable widths, and the length of the result is equal to the sums of
the lengths of the arguments. The super classes on the declaration can be
used to simplify redundant contexts such as (Width a, a # b = c) to the
equivalent (a # b = c).

Here is an example of concatenating two bit vectors:

7.2. BIT VECTORS 97

> show (B100 # B111)

"B100111"

As a another example, consider the following function:

mask x y = bitAnd (x # y) B100

The function mask is interesting because it is polymorphic in its arguments,
which is accurately captured by its type:

mask :: (a # b = 3) ⇒ Bit a → Bit b → Bit 3

The concatenation operator is similar to a constructor because we can
also use it in patterns to split bit sequences. A split pattern has the form
p # q and matches bit vectors whose most significant part matches p and
least significant part matches q. For example, a function to get the upper 16
bits of a 32 bit quantity could be written like this:

upper16 :: Bit 32 → Bit 16

upper16 (x # _) = x

Note that # patterns do not specify how to split a value into two parts, but
simply what the two parts should match. How the sequence will be split
depends on the types of the sub-patterns p and q. These types may be
determined using type inference or from explicit signatures in the patterns.
For example, if we define another function called upper that is the same as
upper16, but we omit the type signature, then we get the following type:

> :t upper

(a # b = c) ⇒ Bit c → Bit a

As an example of a situation where we need to use a signature in a pattern,
consider the function that extracts the bus component of a PCI address:

pciBus :: Bit 16 → Bit 5

pciBus ((dev :: Bit 8) # bus # fun) = bus

If we were to omit the annotation on the dev pattern, then type inference
would fail. For example, our prototype reports the following error:

FAIL

Cannot solve goals: ?a + ?b = 16, ?c + 5 = ?a

98 CHAPTER 7. WORKING WITH BITDATA

The system needs to split a 16 bit quantity into two parts: one of width a
(dev # bus), and one of width b (fun). It also has to split the a component
into two parts: one that is c bits wide (dev), and one that is 5 bits wide
(bus). There is not enough information in the program to determine how
this splitting should be done, which is why we get the type error.

Signature patterns resemble the explicit types on functions in the presen-
tation of the lambda calculus à la Church. At present, our design does not
allow type variables in signature patterns. We could use lift this restriction
by using scoped type variables [77].

7.2.3 Semantics of the (#) Pattern

In the previous example, we defined upper in terms of the pattern (#). Al-
ternatively, we can take upper, together with the symmetric function lower

as the built-in primitives:

class (Width a, Width b, Width c, a + b = c)

⇒ (a # b = c) | a b c, b c a, c a b where

(#) :: Bit a → Bit b → Bit c

upper :: Bit c → Bit a

lower :: Bit c → Bit b

This makes it explicit that we are essentially dealing with a product opera-
tion. Furthermore, using the guarded patterns from Chapter 6, we can also
try to define the pattern (#) in terms of upper and lower:

p # q ≡ (x | p ← upper x; q ← lower x)

Unfortunately this is not quite correct because nothing in the definition states
that we intend to split the value into two adjacent but non-overlapping parts.
Consider, for example, the pattern (x # y), where x and y are pattern vari-
ables. Our intention is that this pattern has the type (we use the keyword
pattern to emphasize that we are specifying the type of a pattern, and not
an expression):

pattern (x # y) :: (a # b = c) ⇒ Bit c → { x :: Bit a, y :: Bit b }

However, the type of the proposed ‘definition’ differs in an important way:

pattern (z | x ← upper z, y ← lower z) ::

(a # b’ = c, a’ # b = c) ⇒ Bit c → { x :: Bit a, y :: Bit b }

7.3. USER-DEFINED BITDATA 99

The difference lies in the contexts. In the first case, we have only a single
piece of evidence because we perform a single split. In the second case,
we have two pieces of evidence, one arising from the use of upper, and one
from the use of lower. The problem is that the two splits are completely
independent of each other: what we want is a = a’ and b = b’, but nothing
in the definition forces these equalities.

We can remedy this problem in several different ways. One option is
to replace the two operations upper and lower by a single operation split,
which would result in a (#) class like this:

class (Width a, Width b, Width c, a + b = c)

⇒ (a # b = c) | a b c, b c a, c a b where

(#) :: (Bit a, Bit b) → Bit c

split :: Bit c → (Bit a, Bit b)

The intention here is that (#) and split form an isomorphism pair (we have
uncurried (#) to emphasize the symmetry). It is then easy to define the
pattern (#) in terms of split:

p # q ≡ (x | (p,q) ← split x)

Another option is to stick with upper and lower as the basic built-in
primitives, but to modify the definition of the pattern (#) to make it explicit
that upper and lower should use the same evidence. We can do this in
the explicit calculus that we used in Chapter 3, resulting in the following
definition:

(p#q) ≡ Λabc. λ̄e : (a#b = c). (x | p ← upperabc · e x ; q ← lowerabc · e x)

In this definition, Λ represents type abstraction, while type application is
written with a subscript. We write evidence abstraction with λ̄, while evi-
dence application is written with a centered dot. The important difference
from the previous definition is that upper and lower use the same evidence,
e, which ensures that the value examined by the pattern is split correctly.

7.3 User-Defined Bitdata

In the context of systems programming, bit vectors are often used as repre-
sentations for values that have more structure. To enable programmers to

100 CHAPTER 7. WORKING WITH BITDATA

capture this extra structure we introduce bitdata declarations to the lan-
guage (Fig. 7.1). The grammar is specified using extended BNF notation:
non-terminals are in italics and terminals are in a bold font; constructs in
brackets are optional, while constructs in braces may be repeated zero or
more times.

The syntax of bitdata declarations resembles data declarations in Haskell,
because this is a common way to specify structured data. However, while
there are many similarities between data and bitdata declarations, there are
also important differences. For example, the type defined by a bitdata dec-
laration is not the free algebra of its constructors (see Section 8.1). Instead,
the type provides a kind of view [93] on the underlying bit sequences. Each
constructor provides a convenient way to construct and recognize particular
forms of bit sequences, while fields provide a means to access or update data
components.

bdecl = bitdata con = cdecl {| cdecl} type decl.
cdecl = con { [fdecls] } [as layout] [if expr] constr. decl.
fdecls = fdecl {, fdecl} field decl.
fdecl = label [= expr] :: τ
layout = layout # lfield | layout :: τ field layout
lfield = lit | _ | (layout)

Figure 7.1: The syntax of user-defined bitdata declarations.

7.3.1 Constructors

To illustrate how bitdata declarations work, we present some definitions for
a device driver for a NE2000 compatible network card [70]. The exact details
of how the hardware works are not important here; our goal is simply to
illustrate the features of bitdata declarations. One of the commands to the
NE2000 card contains a 2-bit field that specifies what the card should do. We
can represent the format of this field with the following bitdata declaration:

bitdata RemoteOp

= Read as B01 | Write as B10 | SendPacket as B11

This is essentially an enumeration type. The definition introduces a new
type constant RemoteOp and three constructors Read, Write, and SendPacket.

7.3. USER-DEFINED BITDATA 101

Note the as clauses specify a bit pattern for each constructor; these patterns
will be used to construct values with the constructor, or to recognize them in
patterns. All constructors should have representations that are of the same
width. The following examples use these constructors:

> :t Read

RemoteOp

> show Read

"B01"

> Read & B00

FAIL Type mismatch: Bit ?a vs. RemoteOp

The last example emphasizes the point that, even though Read is represented
with the bit sequence 01, it is not of type Bit 2.

The type RemoteOp captures only a fragment of the DMA commands avail-
able on NE2000 cards. The full set of DMA commands is described in the
following definition:

bitdata DMACmd = Remote { op :: RemoteOp } as B0 # op

| AbortDMA as B1 # _

This definition uses some more features of the bitdata declarations. In gen-
eral, constructors may have a number of fields that describe sub-components
of the value. For example, the constructor Remote has one field called op of
type RemoteOp. The types of the fields should all have concrete bit vector
representations, which enables us to compute a representation for the value.
We shall make this property more formal in the next section.

To construct values with fields, we use the notation C {l̄ = ē}, where C is
the name of a constructor, l̄ are its field name labels, and ē are the values for
the fields. The order of the fields is not significant. The fields of a constructor
in a bitdata declaration may contain default values. The default value for
a field is written after the field name and should be of the same type as the
field. If a programmer does not initialize a field while creating a value with a
particular constructor, then the field will be initialized with the default value
for the field. If the field does not have a default value, then the program is
invalid and the system will report a compile-time error.

There is also a corresponding pattern C x, which can be used to check if a
value was constructed with the constructor C. The test is computed based on
the as clause for the corresponding constructor: if all tag bits (i.e., non-field
bits) match, then the pattern succeeds, otherwise it fails. It may be useful

102 CHAPTER 7. WORKING WITH BITDATA

to think of these patterns as a more structured version of the (#) operator
that we used for bit vectors.

If the pattern C x succeeds, then the variable x is bound to a value that
contains the fields of the constructor. If we think of a bitdata type as describ-
ing a sum-of-products, then pattern matching with a constructor eliminates
the sum part and binds the variable x to the product part. We introduce
a new type for the product component of each constructor. The name of
the product type for a constructor is obtained by adding a prime to the
name of the constructor. For example, the product type for Remote is called
Remote’. We can use constructor functions to convert a product type back to
the bitdata type. Here are the types of the constructor functions for DMACmd:

Remote :: Remote’ → DMACmd

AbortDMA :: DMACmd

Note that, for constructors that have no fields (e.g., AbortDMA), we do not
generate a product type, and the constructor function simply creates the
appropriate value.

7.3.2 Product Types

The product types associated with a constructor are useful because they cap-
ture statically the extra information that the tag bits of the value match the
pattern for the given constructor. Indeed, a similar approach could be use-
ful for ordinary algebraic datatypes as well. To manipulate product types,
we provide operations that can access the value for each of the fields in
the product, as well as operations for updating field values. These opera-
tions are generated by the compiler and can be implemented internally using
bit-twiddling. The names of the operations are obtained by combining the
operation name, the name of the constructor, and the field name. For ex-
ample, the product type Remote’ has one field called op, and so we get the
following two operations:

(get’Remote’op) :: Remote’ → RemoteOp

(set’Remote’op) :: RemoteOp → Remote’ → Remote’

To see how we might use these functions, here is an example of a function
that will change remote read commands into remote write commands and
leave all other DMA commands unchanged:

7.3. USER-DEFINED BITDATA 103

readToWrite :: DMACmd → DMACmd

readToWrite (Remote x) = Remote (upd (get’Remote’op x))

where

upd Read = set’Remote’op Write x

upd _ = x

readToWrite x = x

Clearly, the notation for manipulating product types is a little verbose.
Our intention is that we should not work with these functions directly but
instead, if possible, we should reuse the record system of the language that
is being extended with bitdata. For example, Haskell 98 has a simple record
system that allows field labels to be used only in a single type. If we were to
take this approach, then we would not need to annotate the operations with
the constructor names because the field names would be unique.

Records. Alternatively, we can use qualified types to overload the oper-
ations that manipulate records [41, 32]. In this way, we can use the same
label for fields in different types and then rely on type inference to resolve
the actual type that we are manipulating. The basic idea is to introduce a
family of classes, one for each label, l:

class Field’l r t | l r t where

get’l :: r → t

class Field’l r t ⇒ UpdField’l r t | l r t where

set’l :: t → r → r

We split the operations in two (families of) classes so that we can support
both read-only and updateable fields (we shall make use of this in Chapter
10). The predicate Field’l r t asserts that the record type r has a readable
field l of type t. Similarly, UpdField asserts that we can both get the value
of a field, and also create a new record with an updated value for the field.
When we declare a new bitdata type, the compiler generates the appropri-
ate instances for the two classes based on the fields for each constructor.
For example, for the DMACmd type, the compiler will generate the following
instances:

instance Field’op Remote’ RemoteOp where

get’op = get’op’Remote

104 CHAPTER 7. WORKING WITH BITDATA

instance UpdField’op Remote’ RemoteOp where

set’op = set’op’Remote

In addition to overloading the operations for working with product types,
we also use some syntactic sugar when we work with records:

r.l = get’l r

{ r | l = v } = set’l v r

The update notation also supports updating multiple fields, which can be
desugared into nested uses of set. For example, writing { r | l1 = v1, l2 = v2 }

is the same as writing set’l2 v2 (set’l1 v1 r).

Record Patterns. When we pattern match with a constructor, we often
need to access the fields and perhaps make decisions based on their values.
To make this easier, we introduce a special pattern that examines records:
{ l̄ = p̄ }. Such a pattern succeeds if the value of the field l matches the
pattern p. More formally, we can translate a record pattern to the notation
from Chapter 6 like this:

{ l1 = p1, l2 = p2 } = (x | p1 ← x.l1, p2 ← x.l2)

As an example, here is how we might rewrite the function readToWrite using
the record notation:

readToWrite :: DMACmd → DMACmd

readToWrite (Remote { op = Read }) = Remote { op = Write }

readToWrite x = x

Note that, because we overloaded the operations for manipulating records,
the record patterns are not specific to bitdata:

{ l = y } :: Field’l a b ⇒ a → { y :: b }

In Chapter 10, we will make use of this generality by reusing the same nota-
tion to access the fields of structures that are stored in memory.

7.3.3 The ‘as’ Clause

The as clause of a constructor may contain literals, field names, and wild-
cards (_), separated by #. Field names must appear exactly once, but can

7.3. USER-DEFINED BITDATA 105

be in any order. Type signatures are also permitted in the as clause. The
representation for a constructor is obtained by placing the elements in the
layout specification sequentially with the left-most component in the most
significant bits of the representation. For example, the layout specification
for the constructor Remote says that we should place 0 in the most significant
bit and that we should place the representation for the field op next to it:

> show (Remote { op = Read })

"B001"

The as clause is also used to derive tests that will recognize values corre-
sponding to the constructor. The matching of a pattern C p proceeds in two
phases: first, we see if the value is a valid C-value, and then we check if the
nested pattern p matches. The tests to recognize C-values check if the bits
of a value corresponding to literals in the as clause match. For example, to
check if a value is a Remote-value we need to check that the most significant
bit is 0.

It is possible to use an alternative choice for the semantics of bitdata
constructor patterns C x. In particular, when we match to see if we have a
C value, we could consider not only the literals in the as clause, but also the
possible values for the fields of the constructor. To see the difference between
the two choices, consider the following example:

bitdata Tag1 = A as B00 | B as B11

bitdata Tag2 = C as B01 | D as B10

bitdata T = Tag1 { tag :: Tag1, val :: Bit 30 } as tag # val

| Tag2 { tag :: Tag2, val :: Bit 30 } as tag # val

f (Tag1 x) = 1

f (Tag2 x) = 2

If we consider the definition of T, there are no literals (‘tag’ bits) in the as
clauses of either of the constructors. Therefore, using the first semantics
of pattern matching on bitdata constructors we cannot distinguish between
Tag1 and Tag2 values, and so the function f will produce a result of 1 for any
input. If we use the second semantics, however, and consider the possible
values for the fields, then the Tag1 pattern will only succeed if the two most
significant bits are B00 or B11, as these are the only possible values for the
type Tag1.

106 CHAPTER 7. WORKING WITH BITDATA

The first design choice has the benefit that it is simpler and results in
more efficient code than the second choice, but it has the drawback that,
in some cases, like the previous example, may result in surprising behavior.
The first design is simpler because, to decide if a pattern matches we only
need to look at the as clause for the relevant constructor, while with the sec-
ond choice we would need to examine the definitions of the types for all the
fields (and in turn, the definitions of their fields). Of course, the implemen-
tation could compute the set of matching bit patterns and simply show it to
the programmer upon request. Still, because the predicate associated with
matching a constructor is more complex with the second design choice, the
code that we have to generate is less efficient. Furthermore, with some more
unusual bitdata, such as the pointers that we will introduce in later chapters,
it is difficult to compute a set of valid bit patterns. For these reasons, in our
implementation we used the first design choice. Programmers can recover the
behavior of the second design choice by using explicit if clauses together with
the automatically generated isJunk predicate, both of which are described
in the following sections. Here is how we could do this for previous example:

bitdata Tag1 = A as B00 | B as B11

bitdata Tag2 = C as B01 | D as B10

bitdata T = Tag1 { tag :: Tag1, val :: Bit 30 } as tag # val

if not (isJunk tag)

| Tag2 { tag :: Tag2, val :: Bit 30 } as tag # val

if not (isJunk tag)

Wild cards in the layout specifications represent “don’t care” bits and do
not play a role in pattern matching. For value construction, they have an
unspecified value. The only constraint on a concrete implementation is that
the “don’t care” bits for a particular constructor are always the same. This
is necessary if we want to convert bitdata values to bit vectors. In Section
7.4, we shall discuss such a function, called toBits. Using this function,
programmers may observe the value of the “don’t care” bits. Therefore,
it is important that toBits returns the same bit pattern when applied to
arguments created with the same constructor (and same fields). For example,
the AbortDMA constructor only specifies that the most significant bit of the
command should be 1 and the rest of the bits are not important, but in
a particular implementation the compiler could choose a representation in
which all the remaining bits are also zeros.

7.3. USER-DEFINED BITDATA 107

Constructors that have no as clause are laid-out by placing their fields
sequentially, as listed in the declaration. This is quite convenient for types
that do not contain any fancy layout (e.g., the type PCIAddr). Following this
rule, the representation of constructors with no fields and no as clause, is
simply NoBits, the value of type Bit 0. Such examples are not common, but
this behavior has some surprising consequences. By analogy with the syntax
of algebraic datatypes in Haskell, a new user may try to define a type for
Boolean values like this:

bitdata MyBool = MyFalse | MyTrue

This is a legal definition, but it is probably not what the user intended:
both constructors end up being represented with NoBits and are thus the
same. Our implementation examines bitdata declarations for constructors
with overlapping representations and warns the programmer to alert them of
potential bugs. In hobbit, this example will trigger a warning about overlap-
ping representations that will alert the programmer to what is, in this case,
a likely bug.

7.3.4 The ‘if’ Clause

In some complex situations, the pattern derived from the layout of a value
is not sufficient to recognize that the value was created with a particular
constructor. Occasionally it may be necessary to examine the values in the
fields as well. For example, the LD instruction of the Z80 processor should
never contain the register MemHL as both its source and its destination. In
fact, the bit pattern corresponding to such a value is instead used for the
HALT instruction:

> show (LD { src = MemHL, dst = MemHL })

"B01110110"

> show HALT

"B01110110"

One way to deal with complex definitions is to include an explicit guard [76]
in any definition that pattern matches on LD. For example:

instrName (LD { src = x, dst = y })

| not (x == MemHL && y == MemHL) = "Load"

instrName Halt = "Halt"

108 CHAPTER 7. WORKING WITH BITDATA

This approach works but it is error prone because it is easy to forget the
guard. To avoid such errors, a bitdata definition allows programmers to
associate a guard with each constructor by using an if clause with a Boolean
expression over the names of that constructor’s fields. The expression is
evaluated after the tests derived from the as clause have succeeded and before
any field patterns are checked. If the expression evaluates to True, then the
value is recognized as matching the constructor, otherwise the pattern fails.
For example, this is how we could modify the definition of Instr to document
the overlap between LD and HALT

bitdata Instr

= LD { dst::Reg, src::Reg } as B01 # dst # src

if not (src == MemHL && dst == MemHL)

| HALT as 0x76

...

instrName (LD _) = "Load"

instrName HALT = "Halt"

We may use the function instrName to experiment with this feature:

> instrName (LD { src = A, dst = MemHL })

"Load"

> instrName (LD { src = MemHL, dst = MemHL })

"Halt"

> instrName HALT

"Halt"

As the second example illustrates, the if clause is used only in pattern match-
ing and not when values are constructed. We made this design choice because
it is simple and avoids the need for partiality or exceptions, which could oth-
erwise arise when the if clause is used during value construction. The cost
of this choice is minimal because, if necessary, programmers always have
the option to define ‘smart constructors’ that validate the fields before con-
structing a bitdata record. For example, here is how we could define a smart
constructor for the LD instruction:

ld :: Reg → Reg → Maybe Instr

ld MemHL MemHL = Nothing

ld x y = Just (LD { src = x, dst = y })

7.4. BITDATA AND BIT VECTORS 109

7.4 Bitdata and Bit Vectors

7.4.1 Conversion Functions

There is a close relation between the bit sequence types Bit n and bit-
data types like RemoteOp, because they are both represented with fixed bit-
patterns. However, not all types in the language may be converted to and
from bit vectors. Some types are completely abstract and cannot easily be
converted to bit sequences (e.g., function values). Other types have concrete
bit representations, but may also have extra constraints (an example are the
array indexes to be discussed in Chapter 10). Finally, we have types that are
basically views on bit vectors, and so we can convert them both to and from
bit-vectors. To accommodate these different levels of abstraction we use two
classes: BitRep for types that can be converted to bits, and BitData for types
that can be converted both to and from bits. Both of these predicates track
the number of bits that are required to represent a value. We use a functional
dependency to specify that the number of bits is uniquely determined by the
type of the value.

class BitRep t n | t n where

toBits :: t → Bit n

class BitRep t n ⇒ BitData t n | t n where

fromBits :: Bit n → t

isJunk :: t → Bool

The function toBits converts values into their bit-vector representations,
while the function fromBits does the opposite, turning bit sequences into
values of a given type. The function isJunk identifies ‘malformed’ values that
do not match any of the constructor patterns of the type. We may think of
toBits as a pretty-printer, and of fromBits as a parser that use bits instead
of characters. These functions can be very useful when a programmer needs
to interact with ‘the outside world’. The function toBits will be used when
data is about to leave the system, and the function fromBits is used when
data enters the system. Our intention is that bitdata values are represented
internally with the bit patterns specified in their declaration. In this case,
these two functions can be implemented as simple identity functions that do
not inspect or modify their arguments, and serve only as a restricted form of
unchecked type-cast.

110 CHAPTER 7. WORKING WITH BITDATA

Properties. We expect that fromBits and toBits are inverses of each other
in the sense that the equation toBits (fromBits n) = n holds for all bit-
vectors n, independent of the type of the intermediate value that we create.
This is useful because it enables programmers to propagate ‘junk’ values to
other parts of the system without changing them. Saying that toBits and
fromBits are inverses suggests that the equation fromBits (toBits n) = n

should also hold. But what do we mean by equality in this case? We use
operational equivalence and we consider two expressions to be the same if
we can replace the one with the other in any piece of program. Because
expressions of bitdata types are represented with bit patterns, then two ex-
pressions are the same if they are represented with the same bit pattern:
x == y ⇐⇒ toBits x == toBits y . Using this definition for equality we
can see that the second equation follows from the first.

Relation to Views Views [93] provide the ability to pattern match on an
abstract type as if it were an algebraic datatype. This is accomplished by
defining a ‘view’ type, which specifies a set of functions for converting values
of the abstract type into the view type. Values of the view type are used in
pattern matching, but the programmer cannot construct them outside of a
view type declaration.

One can regard bitdata declarations as defining views on a specific class of
types, namely Bit n types. Limiting the scope in this way allows us to provide
considerably more powerful functionality. In Wadler’s work, view types are
phantom types that can only be used in pattern matching. In contrast, a
bitdata declaration creates a new type that may appear in type signatures and
whose values may appear on both the left and right hand sides of an equation.
In addition, our compiler automatically generates the marshalling functions.
In most cases, the application of these functions imposes no performance
penalty because they are identity functions on the underlying representations,
whereas view transformation functions may perform arbitrary computation.

7.4.2 Instances for ‘BitRep’ and ‘BitData’

In this section we discuss which types have instances for the classes BitRep

and BitData. This is important because it determines what we may assume
about the representations of different types. In particular, we use the class
BitRep to formalize what we mean by bitdata: all types that have concrete bit

7.4. BITDATA AND BIT VECTORS 111

representations belong to BitRep. The class BitData identifies those bitdata
types that are essentially ‘views’ on bit vectors.

Built-in types, such as the Bit n types, have predefined instances:

instance Width n ⇒ BitRep (Bit n) n where ...

instance Width n ⇒ BitData (Bit n) n where ...

In later chapters we shall introduce other built-in types that have bit rep-
resentations (and so they belong to BitRep), but they also satisfy special
constraints on their representation and thus they lack instances for BitData.

Types that are defined with bitdata declarations automatically get in-
stances of BitRep, which are derived from their as clauses. However, to get
an instance for BitData programmers have to provide an explicit deriving

clause to the declaration. Doing so provides a fromBits function, but may
add ‘junk’ values to the type (i.e., values that cannot be defined using the
constructors of the type). For example, consider the following declaration:

bitdata T = A as B01 | B as B10

If we were to derive fromBits for T, then we could write fromBits B00 to
obtain a value of type T, which cannot be defined either with A or with B.
We can use the function isJunk to test for such values.

We mentioned before that the fields of bitdata declarations may only
contain types that have concrete bit representations. We are now in position
to make this more formal by using the BitRep and BitData classes. We require
that all fields of all constructors in a bitdata declaration should be members
of, at least, the BitRep class. This ensures that we can compute a bit-pattern
for each field. In addition, if a programmer wishes to derive an instance of
the BitData class for a given type, then all the fields in the type should be
in the BitData class.

As we have already stated, we would like to ensure that types that do
not belong to the BitData class contain only values that can be defined using
their constructors. To ensure that this invariant holds, in some situations we
require that overlapping fields in a bitdata declaration are members of the
BitData class, even if the type itself is not. If we omit this requirement, then
it is possible to convert arbitrary bit patterns into values of types that do
not belong to the BitData class, thus violating our invariant. To see how this
could happen, consider some type T (of width n), that is not a member of the
BitData class. Then we can write a function to convert arbitrary bit patterns
to T values by using an additional bitdata declaration like the following:

112 CHAPTER 7. WORKING WITH BITDATA

bitdata Views = Abs { abs :: T } | Raw { raw :: Bit n }

fromBitsT :: Bit n → T

fromBitsT bits = case Raw { raw = bits } of

Abs { abs = t } → t

This function works because the constructors of the type Views provide dif-
ferent views on T values: one abstract and one as a bit vector. Notice that
the representations for the two constructors ‘overlap’ because there are no
‘tag’ bits to distinguish the two. Because we can ‘confuse’ the values of one
type with values of another, we have lost the abstraction that may have been
encapsulated by the types of the fields. This is why we require that the fields
of ‘overlapping’ constructors, should be not just members of the BitRep class,
but also they should be in the BitData class. With this extra requirement,
the definition of the type Views from the previous example would be rejected
on the grounds that the field abs of constructor Abs is of type T, which is not
in the BitData class, but the constructors Abs and Raw overlap. In Chapter 8,
we describe an algorithm that analyzes bitdata declarations to detect when
different constructors overlap.

7.4.3 The Type of ‘fromBits’

In a robust system, programmers must allow for the possibility that data val-
ues that were obtained from the ‘real-world’ may not be valid. An important
design decision related to this issue shows up in the type of fromBits. It does
not include the possibility of failure because fromBits will always produce
a value of the target type, even if the input sequence does not correspond
to anything that may be created using the constructors of that type. We
call such values ‘junk’, and they will not match any constructor pattern in
a function definition. Programmers may, however, use variable or wild-card
patterns to match these values. Consider, for example, defining a function
that will present human readable versions of the values in the RemoteOp type:

showOp Read = "Read"

showOp Write = "Write"

showOp SendPacket = "SendPacket"

showOp _ = "Unknown"

Now we can experiment with different expressions:

7.4. BITDATA AND BIT VECTORS 113

> showOp (fromBits B01)

"Read"

> showOp (fromBits B00)

"Unknown"

> show (toBits (fromBits B00 :: RemoteOp))

"B00"

The first example recognizes the bit-pattern for Read. The second example
does not match any of the constructors as none of them are represented with
B00. The last example illustrates that we can convert a bit sequence into a
value of type RemoteOp and then back into the original bit sequence without
loss of information.

An alternative design decision would be to adopt a checked semantics for
fromBits, where the function result belongs to the Maybe type: the result
Nothing could signal that the bit-pattern does not belong to the type, while
we could indicate success by using Just. We chose to use the unchecked
semantics because it is simple and has practically no overhead (in hobbit,
it is implemented as an identity function). Furthermore, using the checked
semantics may be misleading because —as we discussed earlier—junk values
could arise from pattern matching in the presence of confusion and not be-
cause we have used the fromBits function directly. Programmers can identify
‘junk’ values using the isJunk function. This makes it easy to define a version
of fromBits that supports the checked semantics:

checkedFromBits :: (BitData t n) ⇒ Bit n → Maybe t

checkedFromBits x

| isJunk v = Nothing

| otherwise = Just v

where

v = fromBits x

If the language that is being extended with bitdata supports exceptions,
we could just as easily implement a function that raises an exception if the
bit-pattern does not correspond to a value that can be defined using the
constructors. This diversity of possible implementations provides further
motivation for taking the simplest alternative as primitive, and allowing other
operations to be built on top of it.

114 CHAPTER 7. WORKING WITH BITDATA

7.5 Summary

In this chapter we presented two language extensions that make it easy to
manipulate data with programmer-defined bit representations.

The first extension adds support for working with bit vectors, which is
well integrated with a Haskell-like language. We use overloading to provide
a uniform interface to working with vectors of different sizes, and we also
support pattern matching on bit vectors for readable definitions.

The second extension supports working with structured bitdata. With
this extension, programmers can manipulate bitdata like they manipulate
algebraic datatypes. We use pattern matching to examine the values of pre-
defined ‘tag’ bits, and we automatically generate functions to access and
update bit fields.

The following is a summary of the (overloaded) constants from our design:

-- Bit vectors

Bit :: Nat → *

-- Bit literals

-- data Bit 2 = B00 | B01 | B10 | B11 (etc.)

-- Operations on bit vectors

-- Instances for valid bit-vector sizes

class Width a where

-- comparisons

bitEq :: Bit a → Bit a → Bool

bitCmpU :: Bit a → Bit a → Ordering

bitCmpS :: Bit a → Bit a → Ordering

-- logical operations

bitAnd :: Bit a → Bit a → Bit a

bitOr :: Bit a → Bit a → Bit a

bitXor :: Bit a → Bit a → Bit a

bitNot :: Bit a → Bit a

-- shifts

bitShiftL :: (Width b) ⇒ Bit a → Bit b → Bit a

bitShiftR :: (Width b) ⇒ Bit a → Bit b → Bit a

7.5. SUMMARY 115

-- arithmetic

bitAdd :: Bit a → Bit a → Bit a

bitSub :: Bit a → Bit a → Bit a

bitNeg :: Bit a → Bit a

bitMul :: Bit a → Bit a → Bit a

bitDivU :: Bit a → Bit a → (Bit a, Bit a)

bitDivS :: Bit a → Bit a → (Bit a, Bit a)

-- conversion

bitFromInt :: Integer → Bit a

-- Join and split bit vectors

class (Width a, Width b, Width c, a + b = c)

⇒ a # b = c | a b c, b c a, c a b where

(#) :: Bit a → Bit b → Bit c

bitSplit :: Bit c → (Bit a, Bit b)

bitSignExt :: Bit b → Bit c

-- Instances for a, b, and c that satisfy super-class constraints

-- Data with bit representation

class BitRep t n | t n where

toBits :: t → Bit n

-- Instances for bit vectors

-- Instances for bitdata declarations

-- Required for bitdata fields

-- A ‘view’ on a bit vector

class BitRep t n ⇒ BitData t n | t n where

fromBits :: Bit n → t

isJunk :: t → Bool

-- Instances for bit vectors

-- Instances for bitdata with explicit deriving annotation

-- Required for overlapping bitdata fields

116 CHAPTER 7. WORKING WITH BITDATA

Chapter 8

Static Analysis of Bitdata

In this chapter, we show that, when we work with certain kinds of bitdata,
it is useful to perform static analysis that goes beyond type checking. In
Section 8.1, we describe how bitdata types may fail to satisfy two important
properties of algebraic datatypes. In the rest of the chapter, we present two
algorithms that help us detect and work with such bitdata. In Section 8.2,
we describe an algorithm that analyzes bitdata declarations to detect if the
defined type satisfies the properties of ordinary algebraic datatypes. We do
not reject declarations that fail to satisfy the algebraic laws, but we provide
diagnostics to help programmers work with such bitdata. In Section 8.3, we
describe an algorithm that examines function definitions for potential errors,
such as missing or unreachable equations.

8.1 Junk and Confusion!

Standard algebraic datatypes enjoy two important properties that are some-
times referred to as ‘no junk’ and ‘no confusion’ [33], both of which are
useful when reasoning about the behavior of functional programs. The for-
mer asserts that every value in the datatype can be written using only the
constructor functions of the type, while the latter asserts that distinct con-
structors construct distinct values. In the language of algebraic semantics,
which is where these terms originated, the combination of ‘no junk’ and ‘no
confusion’ implies that the semantics of a datatype is isomorphic to the initial
algebra generated by its constructor functions.

Because programmers specify the representations for the values of bitdata

117

118 CHAPTER 8. STATIC ANALYSIS OF BITDATA

types, it is possible that such types may contain ‘junk’ or ‘confusion’ (or
both). For example, ‘confusion’ arises when the bit patterns for different
constructors in a bitdata declaration overlap. We can introduce ‘junk’ by
deriving an instance for the BitData class (see Chapter 7). Then applying
fromBits to a bit pattern that does not correspond to a constructor results
in a ‘junk’ value.

Usually, we try to avoid having junk and confusion in bitdata types.
However, in some situations, a designer might still opt for a representation
that sacrifices one or both of these properties to conform to an external
specification, or because it simplifies the tasks of encoding and decoding.
Recall, for example, the type Time from Chapter 1:

bitdata Time = Now as B0 # 1 # (0::Bit 10)

| Period { e::Bit 5, m::Bit 10 } as B0 # e # m

| Never as 0

This type contains confusion (because the Now and Never cases overlap with
the Period case), and would also contain junk if we were to derive an instance
of BitData (because the most significant bit can never be set).

It is also worth commenting that the potential for ‘confusion’ in a bitdata
type can sometimes be used to our advantage. The following example shows
a DWord type that reflects different interpretations of a 32 bit word on an
IA32 platform as either a full word, a virtual address with page directory
and page table indexes, or a collection of four bytes:

bitdata DWord

= Int32 { val :: Bit 32 }

| VirtAddr { dir :: Bit 10, tab :: Bit 10, offset :: Bit 12 }

| Bytes { b3 :: Byte, b2 :: Byte, b1 :: Byte, b0 :: Byte }

Each of these constructors can encode an arbitrary 32 bit value, but we can
use pattern matching to select the appropriate view for a given setting.

Bitdata types that contain junk or confusion (or both!) do not satisfy
the usual properties that one might expect of algebraic datatypes, and so
programmers need to exercise caution when working with such types. For
example, pattern matching on bitdata that has confusion is similar to working
with overlapping patterns: when programmers define functions, they need to
check for more specific cases first. When working with bitdata that contains
junk, programmers may wish to provide ‘default’ cases to function definitions,
even if a function provides definitions for all constructors in the datatype.

8.1. JUNK AND CONFUSION! 119

Such cases are used to handle junk values, and to increase the robustness
of the program—the exact action taken by the programmer is, in general,
application specific but, for example, a programmer may raise an exception,
or, alternatively, they may choose to propagate junk values unchanged in the
result of the function.

To help programmers work with bitdata that contains junk and confusion,
we should first warn them when a bitdata type does not satisfy the usual al-
gebraic properties. In Section 8.2, we develop an algorithm that can examine
bitdata declarations and report accurately when values created with differ-
ent constructors overlap (i.e., when the type contains confusion), or when
there are bit-patterns that cannot be constructed with any constructor (i.e.,
when the type contains junk). Such an analysis is useful for two reasons: (i)
it shows programmers exactly how the usual algebraic laws are violated; and
(ii) it helps programmers to detect erroneous bitdata declarations because
unexpected junk or confusion may reveal mistakes in the declarations.

In addition to analyzing bitdata declarations, it is also useful to analyze
the definitions of functions in the program in an attempt to detect mistakes
that result from junk and confusion. The symptoms that we look for are
unreachable or incomplete functions definitions. Unreachable definitions of-
ten result from the presence of confusion, while incomplete definitions may
be caused by junk (or simply by forgetting a relevant case!). Incomplete
definitions are dangerous because they may cause the program to crash at
run-time. Unreachable equations cannot crash the program, but do not serve
a useful purpose. Because of that, their presence in the program often reveals
mistakes. For example, we might (incorrectly) define a function that converts
Time values to microseconds like this:

toMicro :: Time → Maybe Integer

toMicro (Period { m = m, e = e }) = Just (2^e * m)

toMicro Now = Just 0

toMicro Never = Nothing

There would be nothing wrong with this definition if Time was an ordinary
algebraic datatype. However, from the definition of Time, we can see that
the representations of Now and Never values overlap with the representations
of Period values, and so the second and third equations in the definition
are unreachable. This is the case because, as in Haskell, evaluation prefers
earlier equations in a function definition. Our algorithm would alert the

120 CHAPTER 8. STATIC ANALYSIS OF BITDATA

programmer of this anomaly, and they can correct the definition by placing
the most general case, Period, last in the list of equations defining toMicro:

toMicro :: Time → Maybe Integer

toMicro Now = Just 0

toMicro Never = Nothing

toMicro (Period { m = m, e = e }) = Just (2^e * m)

8.2 Checking Bitdata Declarations

In this section, we describe an algorithm that detects junk and confusion in
types defined with bitdata declarations. The overall idea is simple:

1. Compute the set of bit vectors that can be constructed with each con-
structor of the declaration (we shall write JC K for the set of vectors
that can be constructed with the constructor C).

2. A declaration, d , contains confusion if the sets of bit vectors for any
two constructors overlap.

overlap C D = JC K ∩ JDK
confusion d =

⋃
{overlap C D | C ,D ∈ ctrs d ∧ C 6= D} 6= ∅

The set overlap C D contains those bit vectors that can be constructed
with either constructor C or D . Our algorithm is constructive—when
we detect that a bitdata declaration contains confusion, we can also
display which bit vectors can be constructed with the different con-
structors.

3. A declaration, d , contains junk if there are bit vectors that cannot be
constructed with any constructor.

cover d =
⋃
{JC K | C ∈ ctrs d}

junk d = cover d 6= Univ

The set cover d contains the bit vectors that can be constructed with the
constructors of d . Any remaining bit vectors correspond to junk values.
Again, our algorithm is constructive and can display junk values.

As an example of the output of the algorithm, consider what happens
when we analyze the L4 type Time that we have already seen a few times:

8.2. CHECKING BITDATA DECLARATIONS 121

bitdata Time = Now as B0 # 1 # (0::Bit 10)

| Period { e::Bit 5, m::Bit 10 } as B0 # e # m

| Never as 0

deriving BitData

The diagnostics produced by our prototype are as follows:

Warning: The type Time contains junk:

1_______________

Warning: Constructors Period and Never of type Time overlap

0000000000000000

Warning: Constructors Now and Period of type Time overlap

0000010000000000

The first warning states that any value that has 1 as its most significant bit
is a junk value (notice that all as clauses start with a 0). The other two
warnings indicate the presence of confusion: the given bit patterns can be
constructed with either of the listed constructors (e.g., 0000000000000000 can
be interpreted either as Period or as Never).

8.2.1 ‘as’ clauses

To compute the set JC K for a constructor C we use its layout specification
(i.e., the as and if clauses). In this section, we consider as clauses and in
the following section, we shall turn our attention to if clauses.

Recall that the as clause of a constructor contains a list of fields separated
by the symbol #. A field can be either a literal, or a named field, or a wildcard
pattern. To compute the set of bit vectors for a constructor we compute
the set of bit vectors for each field and then we ‘concatenate’ them. To
‘concatenate’ two sets of bit vectors we concatenate all their elements:

A#B ≡ {xs#ys | xs ∈ A ∧ ys ∈ B}

The sets corresponding to literal and wildcard fields are straight-forward:
for literal fields we use a singleton set containing the literal, and for wildcard
fields we use the set of all bit vectors that are of the same length as the field.

Choosing the set of possible bit vectors for a named field presents us with
some choices. Consider, for example, the following declarations:

122 CHAPTER 8. STATIC ANALYSIS OF BITDATA

bitdata A = A as B1

bitdata B = B { x :: A } as x

In this form, neither A nor B contain junk values because they do not belong
to the BitData class. Now suppose that we derived a BitData instance for
A. In that case, A contains the junk value fromBits B0 but does B contain
any junk? The answer to this question boils down to deciding if the value
B { x = fromBits B0 } should be considered to be a junk value of B. We are
interested in junk values because they do not match any of the constructors
for the type, and so to avoid partial definitions we need to provide extra
‘catch all’ cases. Therefore, the decision if B { x = fromBits B0 } is a junk
value should be related to the semantics of pattern matching with a bitdata
constructor. Recall from Chapter 7 that, when we pattern match with a
constructor we consider only the ‘tag’ bits from the as clause, and not the
possible values for the fields. In this example, the constructor B has no tag
bits, and so matching against it will never fail. Therefore, we do not need an
extra ‘catch all’ equation in definitions involving the type B and thus, it does
not contain junk values. If, however, we had adopted the alternative design
described in Chapter 7, then the type B would inherit the junk from A.

The situation is similar when we analyze for confusion. If a type contains
confusion, then different constructors may match the same value. Therefore,
detecting confusion depends on the semantics of pattern matching. Because
when we pattern match we do not consider the possible values for fields, but
rather we just examine the ‘tag’ bits for constructors, it follows that a type
contains confusion if any two constructors have the same ‘tag’ bits. For an
example, consider the following declarations:

bitdata A = A as B0 deriving BitData

bitdata B = B as B1 deriving BitData

bitdata C = C1 { x :: A } | C2 { y :: B }

Here, the type C contains confusion because there are no tag bits to distin-
guish the constructor C1 from the constructor C2. Note also that, as we have
discussed in Chapter 7, because of this overlap the types A and B have to be
in the BitData class.

The conclusion from this discussion is that because when we pattern-
match we do not consider the possible values for the fields of a bitdata con-
structor, it follows that in our analysis here we should treat named fields
in as clauses in the same way as we treat wildcards. In particular, when

8.2. CHECKING BITDATA DECLARATIONS 123

we analyze the declarations from A, B, and C, we should get the following
warnings:

Warning: The type A contains junk:

1

Warning: The type B contains junk:

0

Warning: Constructors C1 and C2 of type C overlap:

_

8.2.2 ‘if ’ clauses

In its most general form, the layout specification for a constructor also sup-
ports an if clause that may make decisions based on the values in the fields of
the constructor. When we pattern match with a constructor whose specifica-
tion has an if clause, the pattern will only succeed if the Boolean expression
of the if clause evaluates to True. Therefore, when we compute the set of bit
vectors that correspond to a constructor, we need to constrain it with the
Boolean expression from the if clause.

This leads to several challenges. First, because if clauses may contain ar-
bitrary Boolean expressions, computing the set of bit vectors for a constructor
becomes undecidable in general. The second problem is that we only use if
clauses in pattern matching but not when we construct values (we made this
decision to avoid partial constructor functions). As a result, constructors
may be used to introduce junk values and so we may not completely ignore
the if clauses during analysis. Consider, for example, a definition like the
following:

bitdata T = T { x :: Bit 4 } if x > 10

If we omit the if clause, then the system will not report junk in this type,
even though patterns like T { x = x } will fail if x ≤ 10.

Our solution is to restrict the set of possible bit vectors with the if clause
when the Boolean decision is fairly simple and to revert to a conservative
strategy for complex if clauses. In practice this works pretty well because
it is common to have fairly simple decisions in if clauses (e.g., comparisons
with constants) and so undecidability is not a problem.

We say that a strategy is conservative if it guarantees that the algorithm
will not miss any problems with the declarations. However, because the

124 CHAPTER 8. STATIC ANALYSIS OF BITDATA

algorithm is approximating the actual behavior of the program, it may report
some false-positives (i.e., reporting junk or confusion when there is none).

The conservative strategy that we use depends on how we plan to use
JC K. When we are computing JC K to detect confusion between constructors,
the safe strategy is to compute a superset of the real value of JC K and so we
approximate complex Boolean expressions by True. When we are computing
JC K to detect junk in bitdata declaration, the safe strategy is to compute a
subset of the actual value of JC K, and so we approximate complex Boolean
expressions by False.

8.2.3 Working with Sets of Bit Vectors

In the previous sections we described how to analyze bitdata declarations for
junk and confusion in terms of sets of bit vectors. In this section we describe
an efficient implementation for such sets and their corresponding operations.
More concretely the set operations that we need are: union, intersection,
complement, and concatenation. It is also convenient to have a method for
displaying the elements in a set in a concise fashion.

The idea is to represent a set of bit vectors by its characteristic function
(i.e., a function that given a bit vector will compute if the vector belongs
to the set or not). Any such function is going to be a function of the in-
dividual bits in the bit vector. A well-understood and widely used method
for representing such Boolean functions is to use ordered binary decision di-
agrams (OBDDs) [16], and so in the reminder of this section we provide a
brief introduction to these ideas.

A BDD is a binary decision tree with a variable at each node, and two
branches specifying the value of the expression for when the variable is true
or false, respectively. In fact, it is common to use an acyclic graph instead
of a tree to represent BDDs. This is useful because it can make the repre-
sentation more compact, and thus enhance the efficiency of the operations.
For the purposes of this section, however, we shall ignore this detail and
use a tree. The operations that we define behave identically on trees and
graphs, but if we use the graph representation, then we have to take care to
preserve the common structure. Furthermore, it is not clear that the shar-
ing is really necessary for our purposes: we used the tree representation in
the implementation of our static analysis algorithm, and it seems to work
quite well. This can be explained by the relatively low number of variables
(e.g. at most 32) in our Boolean expressions. This is in contrast to other

8.2. CHECKING BITDATA DECLARATIONS 125

applications of BDDs, such as hardware circuit verification, where Boolean
expressions may contain hundreds of variables. We use the following data
structure to represent BDDs:

type Var = Int

data BDD = F | T | ITE Var BDD BDD

The nodes of the tree are like a special form of an if-then-else expression
(hence the name ITE for the constructor) where the condition is always a
variable. For example, the tree ITE x T F encodes the Boolean expression x ,
while the tree ITE x F T encodes the Boolean expression not x because the
expression evaluates to F when the variable x is true, and to T when x is false.

It is convenient to define the normal if-then-else operator, ite, that allows
expressions in the decision. We can then use this operator to define a number
of other operations on BDDs:

bddAnd :: BDD -> BDD -> BDD

bddAnd p q = ite p q F

bddOr :: BDD -> BDD -> BDD

bddOr p q = ite p T q

bddNot :: BDD -> BDD

bddNot p = ite p F T

Note that these correspond to set intersection, union, and complement re-
spectively.

Our first attempt to define the ite operator might look something like
this:

ite1 T t e = t

ite1 F t e = e

ite1 (ITE x p q) t e = ITE x (ite1 p t e) (ite1 q t e)

While this definition is not wrong, it may produce decision trees that are
not very good. Consider, for example, the expression ite1 x x x. Clearly
this expression behaves in exactly the same way as x. However, here is what
happens if we use ite1 (remember that the expression x is represented as
ITE x T F):

126 CHAPTER 8. STATIC ANALYSIS OF BITDATA

ite1 (ITE x T F) (ITE x T F) (ITE x T F)

= (case 3 of ite1)

ITE x (ite1 T (ITE x T F) (ITE x T F)) (ite1 F (ITE x T F) (ITE x T F))

= (case 1 and 2 of ite1)

ITE x (ITE x T F) (ITE x T F)

The problem is that we are not propagating information that we learn at
ITE nodes to the branches. The basic observation is that, while making a
decision, we never need to examine the value of a variable more than once:
once we test a variable x, we can assume that x is true in the left branch,
and that it is false in the right branch. In terms of our representation, this
translates into the property that variables should appear at most once on
any path in a BDD. One way to solve this problem is to write a function that
eliminates redundant tests:

simp :: [(Var,Bool)] → BDD → BDD

simp xs F = F

simp xs T = T

simp xs (ITE x t e)

= case lookup x xs of

Just True → simp xs t

Just False → simp xs e

Nothing → ITE x (simp ((x,True) :xs) t)

(simp ((x,False):xs) e)

ite2 p t e = simp [] (ite1 p t e)

The function simp has an extra argument that stores information about vari-
ables: after we test a variable, we record the value in the respective branches.
If we encounter another test on the same variable, then we eliminate it by
using the known value.

This solution is correct, but we can do even better if we assume that all
decision trees have the property that they do not contain redundant tests.
The idea is to pick some fixed order in which we examine variables and then
use this order in all decision trees. Such BDDs are called ordered BDDs
because of the ordering on the variables. More concretely, an OBDD is a
BDD in which the variables on any path in the tree are strictly decreasing
from the root to the leaves. The fact that variables are strictly decreasing
ensures that they are not repeated. The fact that they always decrease gives
us an efficient way to know what variables may appear in the sub-trees. For

8.2. CHECKING BITDATA DECLARATIONS 127

example, if we know that x ≥ y , and that the value of x is b, then we can
use the following function to optimize a decision tree:

with :: Var → Bool → BDD → BDD

with x b (ITE y p q)

| x == y = if b then p else q

with _ _ t = t

Notice that we do not need to examine the sub-branches of the tree because
the ordering property of OBDDs and the assumption that x ≥ y combine to
guarantee that if x appears in the tree, then it will appear exactly once and
only at the root.

We are now ready to present the final version of the function ite:

ite :: BDD → BDD → BDD → BDD

ite T t _ = t

ite F _ e = e

ite p t e

= let x = maximum [x | ITE x _ _ ← [p,t,e]]

t’ = ite (with x True p) (with x True t) (with x True e)

e’ = ite (with x False p) (with x False t) (with x False e)

in if t’ == e’ then t’ else ITE x t’ e’

The base cases are as before: if the condition is a constant, then we just
pick the appropriate alternative. Otherwise, we need to make a decision,
but there is an interesting twist here: OBDDs require us to check variables
in a fixed (decreasing) order. This means that the variable that we should
examine next is not necessarily the one that is in p, but rather the largest
variable that occurs in all three of p,t,e. This variable, x, is quite simple to
compute because the largest variable (if any) of an expression is always at the
root. Having picked the variable to examine, we can compute a new ‘then’
and ‘else’ branch by modifying the current problem to take into account
the value of x. One final detail in the definition of ite is that, if both the
‘then’ and the ’else’ branch turn out to be the same, then there is no need
to examine the variable after all.

To show how this works in practice, here is a worked out example of the
function ite. Notice how the requirement that we test variables in decreas-
ing order changes the original expression into an equivalent, but different
expression.

128 CHAPTER 8. STATIC ANALYSIS OF BITDATA

-- if 1 then 2 else 3

ite (ITE 1 T F) (ITE 2 T F) (ITE 3 T F)

x = 3

t’ = ite (ITE 1 T F) (ITE 2 T F) T

x = 2

t’ = ite (ITE 1 T F) T T

= T

e’ = ite (ITE 1 T F) F T

x = 1

t’ = ite T F T

= F

e’ = ite F F T

= T

= ITE 1 F T

= ITE 2 T (ITE 1 F T)

e’ = ite (ITE 1 T F) (ITE 2 T F) F

x = 2

t’ = ite (ITE 1 T F) T F

x = 1

t’ = ite T T F

= T

e’ = ite F T F

= F

= ITE 1 T F

e’ = ite (ITE 1 T F) F F

= F

= ITE 2 (ITE 1 T F) F

= ITE 3 (ITE 2 T (ITE 1 F T)) (ITE 2 (ITE 1 T F) F)

-- if 3 then (2 or not 1) else (2 and 1)

The following diagram shows the initial BDD and the resulting OBDD in
graphical format:

One detail that we have not addressed yet is: what constitutes the whole
set? We have not imposed any restrictions on the variables that may appear
in a BDD, and so the whole set is bit vectors of any length. For our purposes,

8.2. CHECKING BITDATA DECLARATIONS 129

Figure 8.1: Transforming a BDD to satisfy the OBDD ordering.

this is not very convenient because we work with bit vectors of a fixed size.
For example, it is nice to display a 16 bit value with 16 bits, but if we work
with just plain BDDs, then nothing in the representation tells us the width of
the value that the BDD represents. For this reason, in our implementation
we used a pair containing the BDD for the pattern and the width of the
encoded expression. An additional property that we expect from the BDD is
that it should only mention variables that are smaller than the width: thus
the BDD for bit vectors of width 8 may mention variables up to 7, while bit
patterns of width 0 should not contain any variables at all.

type Width = Int

data Pat = Pat Width BDD

Knowing the widths of the bit vectors in a set is also useful when we want
to compute the ‘concatenation’ of two sets. Given two OBDDs p and q we
can compute their concatenation by shifting p to the left by incrementing
all of its variables by the width of q and then computing the intersection of
the resulting BDDs. In this way, the BDD p asserts what we know about
the most significant bits of the vectors in the resulting set, and the BDD q

contains the information about the least significant bits.
Finally, we need a good way to display the elements of a set of bit vectors.

In many cases enumerating all the elements is not a good option because there
are simply too many of them. Fortunately we can easily define a function
that represents a decision tree as a set of mutually exclusive patterns:

showPat :: Pat → [String]

showPat (Pat w T) = [replicate w ’_’]

showPat (Pat _ F) = []

showPat (Pat w f@(ITE v p q))

130 CHAPTER 8. STATIC ANALYSIS OF BITDATA

| w’ > v = [’_’ : p | p ← showPat (Pat w’ f)]

| otherwise = [’0’ : p | p ← showPat (Pat w’ q)]

++ [’1’ : p | p ← showPat (Pat w’ p)]

where w’ = w - 1

The first equation displays the entire set: we can do this with a single wildcard
pattern of the appropriate length. The second equation is for the empty set,
which is represented with no patterns. The interesting case is the third
equation, which deals with decisions. If the decision is based on a variable
that is not the most significant bit in the pattern, then, by the property of
OBDDs, we know that the most significant bit will not affect the value of
the expression, and so we display a wildcard (this is done in the first guard).
Otherwise the most significant bit matters, and so we produce two sets of
patterns, one starting with a 0 for the false branch, and one starting with a
1 for the true branch. For example, here is the output of the function when
applied to the decision tree for the complement of the pattern B0001 (i.e., all
4 bit integers, except for 1):

0000

001_

01__

1___

8.3 Checking Function Declarations

In this section, we describe how to analyze the function declarations in the
language, so that we can detect partial or redundant definitions. Such an
analysis is useful in ordinary functional languages, but it is even more impor-
tant here because of the presence of ‘junk’ and ‘confusion’ in some bitdata
types.

8.3.1 The Language

To illustrate the algorithm in a more concrete setting, we use a simple but
expressive language, based on the calculus of definitions from Chapter 6. This
language is obtained by using the rules of the calculus to eliminate some of
the constructs systematically. In particular, we expect that the arguments
to functions were named and factored out of matches (using a procedure like

8.3. CHECKING FUNCTION DECLARATIONS 131

the one described in Chapter 6). This eliminates matches of the form p → m.
Then we may also eliminate patterns entirely by using the definitions of the
various patterns, and the following two rules:

x ← e = let x = e

(p | q) ← e = p ← e ; q

After these simplifications, we end up with the following language:

mat = mat 8 mat -- alternatives

| qual ; mat -- check

| return expr -- success

qual = if expr -- guard

| let d -- local declaration

| qual ; qual -- sequencing

The last technical detail about the language is the assumption that declara-
tions do not shadow existing values, which is easily ensured by renaming local
variables that shadow existing names. To see why we need this, consider the
following expression:

λx → { if p x; let x = e1; if q x; return e2 }

The definition of this function may fail in two different ways: either the ar-
gument does not satisfy the predicate p, or the local variable does not satisfy
the predicate q. Unfortunately, it is difficult to formalize this statement with-
out renaming the variables because both the function argument and the local
variable have the same name.

Renaming the variables solves the problem but, in practical implementa-
tions, we have to do something to indicate to the programmers what the new
names refers to. For example, in a graphical development environment we
could highlight the variables directly on the screen. In a text based imple-
mentation, we should make sure that the new name is related to the original
name. One way to achieve this is to annotate names with the location in the
program where they were defined.

8.3.2 The Logic

The conditions under which a match or qualifier may fail are expressed in a
simple propositional language:

132 CHAPTER 8. STATIC ANALYSIS OF BITDATA

Prop = F | T | Prop ∧ Prop | Prop ∨ Prop | Not prop | Atom expr

Besides the basic propositions T and F, we also allow arbitrary Boolean ex-
pressions in the formulas. This is necessary to express the constraints arising
from guards in the language. Consider, for example, a definition like the
following:

f x y

| x < y = e1

| x == y = e2

| x > y = e3

The analysis of f will result in a warning stating that f may fail if:

not (x < y) ∧ not (x == y) ∧ not (x > y)

In this expression, (x < y), (x == y), and (x > y) are atoms. Of course, we
probably expect that one of the three conditions should hold, but the system
cannot be sure of that without examining the definitions of the functions <,
==, and >. In general, our algorithm does not examine definitions because: (i)
the system becomes too complex; (ii) the definitions may be part of a library
whose code is not available; and (iii) with overloaded functions, like f, we may
not even know the definitions of some of the functions until f is completely
instantiated. In many situations, it is possible to rewrite the guards in the
system in such a way that it becomes obvious that the guards are exhaustive.
For example, we could replace the last branch in the definition of f with a
trivially true guard, such as otherwise.

8.3.3 The Algorithm

The algorithm performs abstract interpretation on matches and qualifiers to
determine under what circumstances they might fail. As an input, we get a
predicate that asserts a number of facts that hold so far, and the match (or
qualifier) to examine:

fails_m :: Prop → Match → Prop

fails_q :: Prop → Qual → Prop

For example, fails_m p m is a predicate that describes the conditions that
will lead to m failing, provided that p holds before we evaluate m. When we
start analyzing a new match we do not have any special pre-conditions, so
we simply use T. Here is the definition of fails_m:

8.3. CHECKING FUNCTION DECLARATIONS 133

fails_m p (m1 8 m2) = fails_m (fails_m p m1) m2

fails_m p (q ; m) = fails_q p q ∨ fails_m (succeeds q ∧ p) m

fails_m p (return e) = F

succeeds :: Qual → Prop

succeeds (if e) = Atom e

succeeds (let d) = T

succeeds (q1 ; q2) = succeeds q1 ∧ succeeds q2

The first equation deals with alternatives: the match fails if the second alter-
native fails, and before examining the second alternative we may assume that
the first one must have failed. The second equation is where decisions are
made in matches. Such qualified matches can fail in two different ways: ei-
ther the qualifier fails, or the qualifier succeeds, but the remaining part of the
match fails. The final equation deals with matches that choose a particular
alternative. Such matches cannot fail.

The function succeeds computes new facts that we may assume if we
know that the qualifier succeeded. Note that, for the case of let qualifiers,
we do not add any assumptions. We could get a more accurate analysis if
we examined the declarations: for example, if a variable is defined with a
constructor (e.g., x = Nil), then we could also use this fact to simplify the
inferred conditions—but we have found that our simpler version works well
in practice.

The code that analyzes qualifiers for failure is similar to the code for
matches:

fails_q p (if e) = Not (Atom e) ∧ p

fails_q p (let d) = F

fails_q p (q1 ; q2) = fails_q p q1 ∨ fails_q (succeeds q1 ∧ p) q2

8.3.4 Unreachable Definitions

As we discussed previously, we would like to know not only when a match
fails, but also if a match contains alternatives that are unreachable. The
analysis is similar to analyzing matches for failure: a match contains an
unreachable alternative, if the pre-condition in the third equation (return e)
is unconditionally false. It is fairly easy to modify the above equations to emit
and propagate these extra conditions, for example using an output monad to
automatically collect the warnings:

134 CHAPTER 8. STATIC ANALYSIS OF BITDATA

fails_m p (m1 8 m2) = do q ← fails_m p m1

fails_m q m2

fails_m p (q ; m) = do r ← fails_m (succeeds q ∧ p) m

return (fails_q p q ∨ r)

fails_m p (return e) = do when (p == F) (warn "Unreachable")

return F

Here is an example of how this works on a simple definition:

f x = e1

f Nil = e2

-- translated version

f = λx → { return e1 8 if isNil x; return e2 }

-- analyzing the match:

fails_m T (return e1 8 if isNil x; return e2)

= using equation (1)

do q ← fails_m T (return e1)

fails_m q (if isNil x; return e2)

= using equation (3), then simplifying

fails_m F (if isNil x; return e2)

= using equation (2)

do r ← fails_m F (return e2)

return (fails_q F (if isNil x) ∨ r)

= using equation (3), then simplifying

do warn "Unreachable"

return (fails_q F (if isNil x))

= using definition of fails_q

do warn "Unreachable"

return F

Because the first alternative cannot fail, the precondition when we reach the
second alternative is F, and hence this code is unreachable.

8.3.5 Simplifying Conditions

So far, we have completely ignored patterns by hiding all decisions inside
qualifiers. To make the algorithm useful, we need to teach it about the
properties of various data declarations. Omitting this step can lead to many
warnings. For example, consider the following definition:

8.3. CHECKING FUNCTION DECLARATIONS 135

null (_ : _) = False

null [] = True

-- translated version

null = λx → { if isCons x; return False

| if isNil x; return True

}

When we perform our analysis we would get a warning that null may fail if
the following condition holds:

not (isCons x) ∧ not (isNil x)

Clearly this cannot happen because Cons and Nil are the only possible con-
structors for the type; but the system does not know that.

In our language, we can pattern match on two forms of types: algebraic
data types, and bitdata. For each of these, we introduce a new formula to
the logic language:

Prop = ... | ADT var {ctrs} | BDT var Pat

The formula ADT x { C1, .. Cn } asserts that the variable x is an algebraic
value that was constructed with one of the constructors C1 . . . Cn. For exam-
ple, instead of writing isCons x, now we can write ADT x { Cons }. We may
use the following rules to simplify formulas:

ADT x { } = F

ADT x { C1 .. Cn } = T -- if C1 .. Cn are all constructors

ADT x cs ∨ ADT x ds = ADT x (cs ∪ ds)

ADT x cs ∧ ADT x ds = ADT x (cs ∩ ds)

Not (ADT x cs) = ADT x (compl cs)

The formula BDT x p asserts that the variable x is one of the bit-patterns
described by the binary pattern p, as discussed in Section 8.2. These formulas
satisfy a similar set of rules, except that the set operations are implemented
using the corresponding BDD operations.

In principle, we can introduce ADT and BDT formulas by examining Atom

predicates and eliminating atoms of the form isC. In our implementation,
however, we did not completely eliminate patterns: we just simplified them
until they were simple algebraic patterns, or binary patterns. We then mod-
ified the above algorithms to deal with patterns directly (which is straight-
forward), generating either ADT or BDT formulas as needed.

136 CHAPTER 8. STATIC ANALYSIS OF BITDATA

8.4 Summary

We have shown that, because programmers specify the representations for
bitdata types, two important algebraic laws, known as ‘no junk’ and ‘no
confusion’, may be violated. A type contains ‘junk’ if there are values that
do not match any of the constructor-patterns for the type. Functions that
are defined by pattern matching on such types need to provide ‘catch-all’
equations to avoid partial definitions. A type contains ‘confusion’, if there
are values that match multiple constructor-patterns. Pattern matching on
such types is similar to working with overlapping patterns, and the order of
the equations in a function definition is important.

To help programmers, we present two algorithms that can be used in
the static analysis phase of an implementation. The first algorithm analyzes
bitdata declarations and reports the presence of junk or confusion. The
algorithm is constructive and computes the representations for the values that
violate the algebraic laws. The second algorithm analyzes function definitions
to detect missing or redundant definitions. Such an analysis is useful for
ordinary algebraic datatypes (and indeed many implementations perform a
similar analysis), but it is particularly useful in the presence of types that
contain junk and confusion. In this area, our contribution is to show that the
algorithm can be extended to handle bitdata types that may contain junk
and confusion.

Chapter 9

Memory Areas

In this chapter, we describe a new language extension that provides direct
support for manipulating memory-based data structures. We would like to
work in a high-level functional language, reaping the benefits of strong static
typing, polymorphism, and higher-order functions, and, at the same time,
be able to manipulate values that are stored in the machine’s memory, when
we have to. In essence, our goal here has been to provide the same levels of
flexibility and strong typing for byte-oriented data structures in memory as
our bitdata work provided for bit-oriented data structures in registers1.

We start with an overview of our design in Section 9.1. Then, in Section
9.2, we introduce our method for describing memory. To manipulate memory
we use references, which are discussed in Section 9.3. Then, in Section 9.4,
we discuss the memory representations for stored values. In Section 9.5 we
show how to introduce memory areas to a program. We conclude the chapter
with a discussion of alternative design-choices in Section 9.6.

9.1 Overview

To illustrate these ideas in a practical setting, we will consider the task
of writing a driver for text mode video display on a generic PC. This is a
particularly easy device to work with because it can be programmed simply

1The material in this Chapter is based on the following paper:

Iavor S. Diatchki and Mark P. Jones. Strongly Typed Memory Areas. In Proceedings

of ACM SIGPLAN 2006 Haskell Workshop., pages 72–83, Portland, Oregon, September,

2006.

137

138 CHAPTER 9. MEMORY AREAS

by writing appropriate character data into the video RAM, which is a memory
area whose starting physical address, as determined by the PC architecture,
is 0xB8000. The video RAM is structured as a 25×80 array (25 rows of 80
column text) in which each element contains an 8 bit character code and an
8 bit attribute setting that specifies the foreground and background colors.
We can emulate a simple terminal device with a driver that provides the
following two methods:

• An operation, cls, to clear the display. This can be implemented by
writing a space character, together with some suitable default attribute,
into each position in video RAM.

• An operation, putc, that writes a single character on the display and
advances the cursor to the next position. This method requires some
(ideally, encapsulated) local state to hold the current cursor position. It
will also require code to scroll the screen by a single line, either when a
newline character is output, or when the cursor passes the last position
on screen; this can be implemented by copying the data in video RAM
for the last 24 lines to overwrite the data for the first 24 lines and then
clearing the 25th line.

There is nothing particularly special about these functions, but neither can
be coded directly in ML or Haskell because these languages do not include
mechanisms for reading or writing to memory addresses.

Instead, if we want to code or use operations like these from a functional
program, then we will typically require the use of a foreign function inter-
face [21, 15]. For example, in Haskell, we might choose to implement both
methods in C and then import them into Haskell using something like the
following declarations:

foreign import ccall "vid.h cls" cls :: IO ()

foreign import ccall "vid.h putc" putc :: Char → IO ()

Although this will provide the Haskell programmer with the desired func-
tionality, it hardly counts as writing the driver in Haskell!

Alternatively, we can use the Ptr library, also part of the Haskell foreign
function interface, to create a pointer to video RAM:

videoRAM :: Ptr Word8

videoRAM = nullPtr ‘plusPtr‘ 0xB8000

9.1. OVERVIEW 139

This will allow us to code the implementations of cls and putc directly in
Haskell, using peek and poke operations to read and write bytes at addresses
relative to the videoRAM pointer. These two functions are a part of Haskell’s
foreign function interface, which allow programmers to read and write values
to memory:

peek :: Storable a ⇒ Ptr a → IO a

poke :: Storable a ⇒ Ptr a → a → IO ()

The class Storable identifies which types may be stored in memory.
Unfortunately, because we have to use pointer arithmetic, we have lost

many of the benefits that we might have hoped to gain by programming
our driver in Haskell! For example, we can no longer be sure of memory
safety because, just as in C, an error in our use of the videoRAM pointer
at any point in the program could result in an unintentional, invalid, or
illegal memory access that could crash our program or corrupt system data
structures, including the Haskell heap. We have also had to compromise on
strong typing; the structured view of video RAM as an array of arrays of
character elements is lost when we introduce the Ptr Word8 type. Of course,
we can introduce convenience functions, like the following definition of charAt
in an attempt to recreate the lost structure and simplify programming tasks:

charAt :: Int → Int → Ptr Word8

charAt x y = videoRAM ‘plusPtr‘ (2 * (x + y*80))

This will allow us to output the character c on row y, column x using a
command poke (charAt x y) c. However, the type system will not flag an
error here if we accidentally switch x and y coordinates; if we use values
that are out of the intended ranges; or if we use an attribute byte where a
character was expected.

9.1.1 Our Approach: Strongly Typed Memory Areas

In this part of the dissertation, we describe how a functional language like
Haskell or ML can be extended to provide more direct, strongly typed support
for memory-based data structures. In terms of the preceding example, we
can think of this as exploring the design of a more tightly integrated foreign
function interface that aims to increase the scope of what can be accomplished
in the functional language. We know that we cannot hope to retain complete
type or memory safety when we deal with interfaces between hardware and

140 CHAPTER 9. MEMORY AREAS

software. In the case of our video driver, for example, we must trust at least
that the video RAM is located at the specified address and that it is laid
out as described previously. Even the most careful language design cannot
protect us from building a flawed system on the basis of false information.
Nevertheless, we can still strive for a design that tries to minimize the number
of places in our code where such assumptions are made, and flags each of them
so that they can be detected easily and subjected to the appropriate level of
scrutiny and review.

Using the language features described in the rest of this chapter, we can
limit our description of the interface to video RAM to a single (memory) area
declaration like the following:

type Screen = Array 25 (Array 80 (Stored SChar))

area screen in VideoRAM :: Ref Screen

(The bitdata type SChar describes the content of a single location on the
screen—for details see Chapter 11, Section 11.1). It is easy to search a
given program’s source code for potentially troublesome declarations like this.
However, if this declaration is valid, then any use of the screen data structure,
in any other part of the program, will be safe. This is guaranteed by the type
system that we use to control, among other things, the treatment of references
and arrays, represented, respectively, by the Ref and Array type constructors
in this example. For example, our approach will prevent a programmer from
misusing the screen reference to access data outside the allowed range, or
from writing a character in the (non-existent) 96th column of a row, or from
writing an attribute byte where a character value was expected. Moreover,
this is accomplished using the native representations that are required by the
video hardware, and without incurring the overhead of additional run-time
checks. The first of these, using native representations, is necessary because,
for example, the format of the video RAM is already fixed and leaves no
room to store additional information such as type tags or array bounds. The
second, avoiding run-time checks, is not strictly necessary, but it is certainly
very desirable, especially in the context of many systems applications where
performance is an important concern.

As a simple example, the following code shows how we can use our ideas
to implement code for clearing the video screen:

cls = forEachIx (λ i →
forEachIx (λ j →
writeRef (screen @ i @ j) blank))

9.2. DESCRIBING MEMORY AREAS 141

In this definition, forEachIx is a higher-order function that we use to describe
a nested loop over all rows and columns, writing a blank character at each
position.

9.2 Describing Memory Areas

In this section, we describe a collection of primitive types that can be used
to describe the layout of memory areas, and a corresponding collection of
primitive operations that can be used to inspect and modify them.

New Kind. We start by introducing a new kind called Area that classifies
the types used to describe memory-area layouts. We use a distinct kind to
emphasize that these are not first-class entities. For example, a memory area
cannot be used directly as a function argument or result and must instead
be identified by a reference or a pointer type:

cls :: Screen → IO () -- incorrect

cls :: Ref Screen → IO () -- correct

The first signature for cls results in a kind error because the function-space
constructor (→) expects an argument of kind * but Screen is of kind Area.

Unlike types of kind *, implementations do not have the freedom to pick
the representation for Area types. Instead, each Area type has a fixed repre-
sentation that corresponds to the shape of the particular memory area that
it describes. In practice, this is useful when we have to interact with external
processes (e.g., hardware devices, or an OS kernel) and so we need to use a
specific data representation.

Stored Values. In Chapters 7 and 8, we described a mechanism for spec-
ifying and working with types that have explicit bit-pattern representations.
We now use such types as the basic building blocks for describing memory
areas. To do this, we need to relate abstract types to their concrete rep-
resentations in memory Unfortunately, knowing the bit pattern for a value
is not sufficient to determine its representation in memory because different
machines use different layouts for multi-byte values. To account for this, we
provide two type constructors that create basic Area types:2

2In Section 9.4 we shall discuss exactly which types of kind * may be used as arguments

to BE and LE.

142 CHAPTER 9. MEMORY AREAS

LE, BE :: * → Area

The constructor LE is used for little endian (least significant byte first) en-
coding, while BE is used for big endian encoding. For example, the type
BE (Bit 32) describes a memory area that contains a 32 bit vector in big
endian encoding. In addition to these two constructors, the standard library
for a particular machine provides a type synonym Stored which is either
LE or BE depending on the native encoding of the machine. Thus writing
Stored (Bit 32) describes a memory area containing a 32 bit-vector in the
native encoding of the machine.

Figure 9.1: Different memory representations of multi-byte values.

Arrays. We may also describe memory-based array or table structures with
the Array constructor:

Array :: Nat → Area → Area

The first argument indicates how many areas belong to the array, while
the second argument describes the format of each sub-area. Thus the type
Array n t describes a memory area that has n adjacent t areas. As the
kind of the constructor suggests, we may use any area type to describe the
sub-areas of an array. Here are some examples of different arrays:

Array 1024 (Stored (Bit 8)) --1024 bytes

Array 64 (LE (Bit 32)) --64 little endian dwords

Array 80 (Array 25 (Stored SChar)) --An array of arrays

Note that the array of arrays in the last example is a completely flat structure
because arrays simply specify adjacent structures. Another way to describe
the same physical area would be to use:

9.3. REFERENCES AND POINTERS 143

Array (80 * 25) (Stored SChar)

These two types are not exactly the same, however, because they differ in
how programmers access the sub-areas of the array.

Structures. Arrays are useful to describe a sequence of contiguous memory
areas that all have the same representation. Programmers may also define
their own combinations of labeled adjacent areas with potentially different
types for each component by using struct declarations. We describe these in
detail in Section 10.1, but a simple example of a struct is a small area that
contains two adjacent stored words, called x and y:

struct Point where

x :: Stored (Bit 32) --lower address

y :: Stored (Bit 32) --higher address

As with arrays, the fields of a structure may contain arbitrary areas, including
arrays or other structures.

9.3 References and Pointers

Because area types belong to a kind different from *, we cannot use ordinary
functions to manipulate areas directly. This is reasonable because Area types
do not correspond to values but rather they describe regions of memory. The
values that we work with are the addresses of various memory areas. We
call such values references and we introduce a new type constructor for their
types:

ARef :: Nat → Area → *

type Ref = ARef 1

The first argument to the constructor is an alignment constraint (in bytes),
while the second argument is the type of the area that lies at the particular
address. Thus, ARef N R is an N-byte-aligned address of a memory region,
described by the Area type R.

Saying that an address is aligned on an N-byte boundary (or simply N-
byte aligned) means that the address is a multiple of N. There are two
common reasons to align data in memory: (i) to ensure efficient access to the
data, and (ii) to represent memory addresses with fewer bits. For example,

144 CHAPTER 9. MEMORY AREAS

on the IA32 it is more efficient to access 4-byte-aligned data then it is to
access unaligned (1-byte aligned) data. Using fewer bits to represent aligned
addresses is a technique commonly used in hardware design, which is why it
also shows up in systems programming. It is based on the observation that, if
an address is aligned on a 2n-byte boundary, then the last n bits of its binary
representation are 0, and so they do not need to be stored. Therefore, when
we work with such devices we need to ensure that data is properly aligned,
or else the device will not be able to access it. In situations where we do
not have any particular alignment constraints we use the type synonym Ref.
Here are some concrete examples of reference types:

Ref (Stored (Bit 32))

ARef 2 (Array 4 (BE (Bit 16)))

The first type is the address of a 32 bit value (in the native representation of
the machine), stored at an arbitrary location in memory. The second type
is for the address of a memory area that contains 4 big endian 16 bit values,
and we know that this area is aligned on a 2 byte boundary.

Clearly, our references serve a purpose similar to pointers in C but they
support a much smaller set of operations. For example, we cannot perform
reference arithmetic directly, or turn arbitrary integers into references. Such
restrictions enable us to make more assumptions about values of type Ref.
In particular, references cannot be ‘invalid’ (for example null). This is in the
spirit of C++’s references (e.g., int&) [85], and Cyclone’s notnull pointers
[46].

In some situations, it is convenient to work with pointers, which are either
a valid reference, or else a null value. From this perspective, we may think
of pointers as values of an algebraic datatype:

data APtr a r = Null | NotNull (ARef a r)

This simple abstraction provides an elegant way to avoid dereferencing null

pointers because we provide only operations to manipulate memory via ref-
erences. For example, if a function has a pointer argument, then before using
it to manipulate memory, a programmer would have to pattern match to en-
sure that the value contains a valid reference. Attempting to use the pointer
directly would result in a type error.

9.3. REFERENCES AND POINTERS 145

9.3.1 Relations to Bitdata

As the kind * suggests, references are ordinary abstract values, and so, in
principle, an implementation is free to choose its own concrete representation.
On the other hand, references also resemble a specialized form of bitdata
because memory addresses are simply bit-vectors. It is therefore useful to
provide an instance of the BitRep class for reference types. Of course, we do
not provide an instance of BitData for references, as this would compromise
the property that references always refer to valid memory areas.

We can provide the BitRep instance in two different ways. The first option
is to use an instance like the following:

instance BitRep (ARef a r) AddrSize

The type synonym AddrSize is the number of bits used by the hardware to
represent addresses. This solution is fairly easy to implement and is sufficient
if all we need is to convert memory references to bit-vectors.

The other option is to take the alignment of the references into consider-
ation and ignore bits that are guaranteed to be 0 by the alignment. We can
do this with an instance like the following:

instance BitRep (ARef (2 ^ n) r) (AddrSize - n)

If we were to choose this instance, then we could define types like the follow-
ing:

bitdata Perms = Perms { read :: Bit 1, write :: Bit 1 }

bitdata T = T { mem :: ARef 4 Data, perms :: Perms }

This type describes a bitdata type T, which contains a reference to some
data (of type Data), and two permission bits. Because we know that the
reference will be aligned on a 4-byte boundary, we only need (AddrSize - 2)

bits to represent the address, and therefore we can represent T values in
exactly AddrSize bits. Such encodings seem to be quite common in systems
programming.

Similar arguments apply to pointer types, except that they contain the
extra Null value. It is quite common to encode Null with the 0 bit-vector,
thus assuming that no memory area will start at address 0. We also adopt
this convention in the BitRep instance for pointers. It is interesting to note
that we could (nearly) define the type of pointers using a bitdata declaration
like this:

146 CHAPTER 9. MEMORY AREAS

bitdata APtr a r = NotNull { ref :: ARef a r }

| Null as 0

For this declaration to work, an implementation would have to know that 0
is not a valid value for references, otherwise the constructors would overlap,
and the system will require a BitData instance for references, and so fail.
Fortunately, this is easy to arrange. The problem with this definition is
that it relies on parameterized bitdata, which is more difficult to analyze.
For this reason, we do not support parameterized bitdata in our current
implementation.

9.3.2 Manipulating Memory

In this section, we describe the operations that we use to store and retrieve
values in memory areas. These operations are overloaded because, in general,
values of different types have different representations, and it would be far
too inconvenient to have a different name for each different type that may
be stored in memory:

class Storable t where

readRef :: Align a ⇒ ARef a (Stored t) → IO t

writeRef :: Align a ⇒ ARef a (Stored t) → t → IO ()

This is a simplified version of our final design, but it is sufficient to explain
a number of common features. We used the name Storable, because there
is a similar class in the Haskell FFI [21].

First, notice that the read and write operations only work on memory ar-
eas that contain stored abstract values. For example, we cannot read directly
through a reference that points to an array, because there is no corresponding
value type that we would get from such a reference.

The overloading of the operations allows us to generate different code for
different values. Depending on the (implementation specific) representation
of a particular value type, we would, in general, access memory in different
ways. For example, if we work with boxed values, then we would have to
box values after we read them from memory, and unbox them before writing
them back.

Another interesting property of Storable is that the operations are guarded
by an alignment constraint. The predicate Align identifies the subset of the
natural numbers that can be used as alignment. This is useful because, for

9.3. REFERENCES AND POINTERS 147

example, an implementation that generates code for hardware that only sup-
ports 4 byte aligned memory access would not solve predicates like Align 1.
In this way, attempting to access memory that is not properly aligned results
in static type errors, rather than run-time crashes.

The types of readRef and writeRef include a monad [66], IO, that en-
capsulates the underlying memory state. For the purposes of our work, we
need not worry about the specific monad that is used. For example, another
alternative in Haskell would be to replace the IO monad with the ST monad
[57], while in House [39], we might use the H (hardware) monad.

Recall that the type synonym Stored is for the native encoding of multi-
byte values on a particular machine. However, we would like to manipulate
values that are stored in other encodings too (e.g., big-endian values in an
IA32 machine). To do this, we can abstract the type Stored from the types,
and add it as an extra parameter to the class:

class Storable enc t where

readRef :: Align a ⇒ ARef a (enc t) → IO t

writeRef :: Align a ⇒ ARef a (enc t) → t → IO ()

This is an example of a constructor class [50], because enc is a type construc-
tor. For every type that we can store in memory, we would then have one
instance for every encoding that we support. For example, for 32-bit vectors
we have the instances:

instance Storable LE (Bit 32)

instance Storable BE (Bit 32)

There is an alternative, and slightly more general way to achieve the
same result. The idea is to think of a class that encodes the relation between
memory areas and the abstract values that are stored in them:

class ValIn r t | r t where

readRef :: Align a ⇒ ARef a r → IO t

writeRef :: Align a ⇒ ARef a r → t → IO ()

The predicate ValIn r t asserts that the memory area r contains an abstract
value of type t. The functional dependency asserts that a memory area may
contain at most one type of abstract value. This is not strictly necessary,
but is quite useful in practice (e.g., if we read twice through a reference,
then we know that we would get the same type of a value). In addition, the

148 CHAPTER 9. MEMORY AREAS

functional dependency enables us to use the notation for functional predicates
from Chapter 5. Thus we may think of ValIn as a partial function of kind
Area → *. For example, we could write the type of readRef like this:

readRef :: Align a ⇒ ARef a r → IO (ValIn r)

The class ValIn is more general than Storable because we can encode all
Storable instances like this:

instance Storable F T

-- corresponds to

instance ValIn (F T) T

For example, the instances for 32-bit vectors are like this:

instance ValIn (LE (Bit 32)) (Bit 32)

instance ValIn (BE (Bit 32)) (Bit 32)

As we can see, the instances are a little more verbose (this is quite common
when we use a functional dependency). There are also instances of ValIn

that we cannot represent with Storable. For example:

instance ValIn (Array 2 (LE (Bit 32))) (Bit 32, Bit 32)

Our implementation currently implements the class ValIn, although we have
not yet made any essential use of its extra generality.

9.4 Representations of Stored Values

So far, we have seen how to describe memory areas and how to store and
retrieve values from memory. In this section, we discuss exactly which types
of kind * may be stored in memory, and what representations they should
use. In our formalism, this amounts to specifying the instances for the class
ValIn, and describing what these instances do to the memory. For example,
we shall not provide an instance for memory areas of type LE (Int → Int)

(because there is no standard way to represent such values) and so program-
mers have no operations to read or write Int → Int values into memory
areas. For other types, such as Bit 32 for example, we have one instance for
each of the little- and big-endian representations. The essential difference be-
tween these two types is that Bit 32 has a concrete bit-vector representation,

9.4. REPRESENTATIONS OF STORED VALUES 149

while the type Int → Int is an abstract type. Formally, this is captured by
the fact that Bit 32 belongs to the BitRep class while Int → Int does not.
Membership in the BitRep class is a good starting point to determine which
types may be stored in memory areas, but we still need to make some more
decisions.

The first has to do with the size of the bitdata types involved. Typically,
machines manipulate memory at a granularity of at least one byte (and some
machines have more restrictions). We have to choose therefore, either to
allow only bitdata whose width (in bits) is a multiple of 8, or else to pad other
bitdata implicitly so that it occupies a whole number of bytes. Currently, in
our implementation, we do not add any implicit padding, and so we do not
allow storing bitdata whose size is not a multiple of 8. Instead, programmers
have to specify how to pad such values explicitly.

The second decision that we have to make is if requiring a BitRep instance
is sufficient, or if we should impose additional constraints on the type. At
present, we have an extra requirement, namely that 0 is a valid value of all
the types that are stored in memory. Clearly, this requirement is somewhat
ad-hoc, but it makes it easy to initialize areas, simply by placing 0 at all
positions. It also makes it safe to provide a memZero operation that clears all
the data in a memory area. This function is quite useful in security sensitive
applications when we reuse the same memory area for different purposes and
hence must clear its content before each use to avoid potential information
leaks. In Section 9.5, we shall discuss alternative approaches to initializing
areas. The main effect of requiring memory-storable types to contain 0 is
that we do not allow references to be stored in memory, but we do allow
pointers.

In general, the representation of a stored value is determined by its BitRep
instances. If the value belongs to a type that is 8*n bits wide, then its area
will occupy n consecutive bytes. The type-constructor that we use to define
the area determines if the bit-vector is stored using a little- or a big-endian
encoding. For single byte values, the representation is the same for BE and
LE areas. There is one exception to these rules, and it has to do with how
we store pointers. Recall from Section 9.3.1 that we represent a 2n byte
aligned pointer with AddrSize - n bits. For example, on a 32 bit machine,
we represent a 4 byte aligned pointer with 30 bits. If we choose to follow
the rules that we just stated, then we would have to disallow storing such
pointers directly in memory. Instead, programmers would either have to
use a wrapper bitdata type to specify the extra 2 bits in the representation,

150 CHAPTER 9. MEMORY AREAS

or else ‘forget’ the alignment constraint before storing pointers in memory.
Neither of these approaches is very satisfactory. For this reason, we allow for
arbitrarily aligned pointers to be stored in memory, and the bit pattern that
we use for a pointer p is toBits p # 0. Memory areas always take the number
of bytes that are required to store an entire machine address. Simply put,
the representation of a pointer is just the address to which it refers, including
the 0s due to alignment. We can achieve this with the following instances:

instance ValIn (LE (APtr a r)) (APtr a r)

instance ValIn (BE (APtr a r)) (APtr a r)

If a programmer needs to store a pointer using its ‘small’ representation
for some reason (i.e., to omit the bits that are guaranteed to be 0 by align-
ment), then they will have to use a wrapper bitdata type, for example like
this:

bitdata Pack = Pack { ptr :: APtr 256 Data }

Because bitdata types consistently use the BitRep representation for their
values, the Pack type would be represented with 3 bytes instead of 4. Of
course, this again is a design choice that we made so that we have this
functionality if we need it. The alternative would have been to generate the
instances for types like Pack that contain only a single pointer in the same
way as we did for pointers. We did not make this choice because: (i) it
removes some functionality, namely the ability to store a pointer with its
small representation; and (ii) it introduces more special cases to the system,
which makes it more difficult to understand and implement.

9.5 Area Declarations

In this section, we describe a conservative, yet practical method for introduc-
ing reference values to a program. To declare memory references, program-
mers use an area declaration, which resembles a type signature:

area name [in region] :: type

Every such declaration introduces a distinct, non-overlapping memory area
that may be accessed with the name specified in the declaration. The align-
ment constraints and the size of the area are computed from the type in the
declaration. For example, we can declare a 4-byte aligned area to an array
of 256 double words like this:

9.5. AREA DECLARATIONS 151

area arr :: ARef 4 (Array 256 (Stored (Bit 32)))

In the previous section, we discussed which abstract types may appear in
memory areas. By limiting the instances to the ValIn class, we ensured that
we have no operations to read and write from ‘malformed’ memory areas.
While, in principle, this is sufficient to ensure the safety of the system, it
would be nice if we could detect and reject declarations that contain such
bad areas. To identify well-formed memory areas, we use the class SizeOf,
which, as the name suggests, also serves to compute the size of the area:

class SizeOf r (n :: N) | r n where

sizeOf :: ARef a r → Int

memCopy :: (Align a,Align b) ⇒ ARef a r → ARef b r → IO ()

memZero :: (Align a) ⇒ ARef a r → IO ()

The methods of the class are generally useful functions that may be applied
to all well-formed areas. The function sizeOf returns the size, in bytes, of
the area referenced by the argument. The function memZero fills the memory
area with 0. The function memCopy transfers the data stored in one memory
area to another memory area of the same type. Implementations are free to
choose the concrete algorithm used to implement these functions based on
the features of the target architecture. Furthermore, note that implementa-
tions may use statically known information about the sizes and alignment of
areas to produce more efficient code: for example, for small areas it may be
beneficial to unroll the loops that copy (or zero) memory areas, thus avoiding
any software bounds checking.

The predicate SizeOf can be discharged for atomic areas (as already dis-
cussed in the previous sections), and also for arrays and user defined struc-
tures. These instances for the latter are defined inductively in the obvious
way: an array is valid if its element type is valid, while a structure is valid if
all of its fields are valid. The size of an array is computed by multiplying the
number of elements by the size of the elements, while the size of a structure is
the sum of the sizes of its fields, plus space allocated for padding (see Chapter
10, Section 10.1 for a discussion of struct declarations). For example, this is
the instance for arrays (the instances for structures are derived automatically
from their declarations):

instance SizeOf (Array n r) (n * SizeOf r)

Notice that the syntax of area declarations does not place any restrictions
on the type in the signature. Of course, not all types may be placed in such

152 CHAPTER 9. MEMORY AREAS

declarations: we allow only types that are references to valid areas. We can
formalize this with the AreaDecl class:

class AreaDecl t where

initialize :: t → IO()

instance (Align a, SizeOf r n) ⇒ AreaDecl (ARef a r) where

initialize x = memZero x

The class AreaDecl is used to validate area declarations. When an implemen-
tation encounters an area declaration, it has to prove that its type belongs
to the AreaDecl class. This process rejects area declarations that do not
describe valid memory areas but it also supplies useful information for the
implementation: the size of the memory area, its alignment constraints, and
how to initialize the area.

The memory areas introduced by area declarations are static, in the sense
that they reside at a fixed location in memory, and the have a life-time that
is as long as the life-time of the entire program. These properties make our
areas very similar to a more structured version of .space directives found
in some assemblers, and also to static declarations in C. Because the life-
time of areas is the entire program, we never need to deallocate the memory
occupied by such static areas and so memory areas do not (need to) reside in
the heap like ordinary abstract values. In addition, the restrictions we place
on what values can be stored guarantee that memory areas do not contain
references to the heap containing the abstract values of the language. Because
of this, the garbage collector does not need to examine memory areas.

Local Areas Currently we allow area declarations to appear both at the
top level of a program and as local declarations. The semantics we use for
local declarations is similar to the semantics of local static declarations in
C: a local area declaration always refers to the same area, no matter how
many times we call a function. This choice ensures that memory areas take
a statically known amount of space, which can be very useful in systems
applications. In Section 9.6.2, we briefly discuss some of the issues that arise
when we work with dynamic areas. The choice that locally defined areas
always refer to the same memory region has an effect on how we reason
about programs (which itself impacts the way that we optimize programs).
In pure languages, we usually expect that we can replace functions with their
definitions (i.e., perform inlining). For example:

9.5. AREA DECLARATIONS 153

let f x = x in (f 1, f 2)

=

(1,2)

Unfortunately, this rule does not work (in general) if we allow local areas
with the static semantics:

let f x = let area r :: T in r

in (f 1, f 2)

6=
(let area r :: T in r

, let area r :: T in r)

In the first case, both components of the pair contain a reference to the same
area while, in the second, we declare two different areas. This is not too
bad in implementations because they could first lift area declarations to the
top level, before performing inlining optimizations. Still, it complicates the
semantics of the language. In our experience with the system, we have not
made essential use of local area declarations, although it appears that they
may be useful to enforce abstraction properties such as hiding the reference
to a local counter within a function definition.

9.5.1 External Areas

In some special circumstances, we may need to work with memory areas
that were created by an external source. Examples include memory mapped
devices (e.g., video RAM), or memory areas created by code written in a dif-
ferent language. To declare such external areas, programmers may annotate
area declarations with an optional region using the keyword in. Such region
annotations are similar to the different segments provided by assemblers. In
general, implementations will not reserve memory for such areas. Instead,
they should use the name of the region to determine how to initialize the ref-
erence for the appropriate area. For example, the video RAM on PCs resides
at physical address 0xB8000. We could declare a memory area to manipulate
the screen like this:

type Row = Array 80 SChar

area screen in VideoRAM :: Ref (Array 25 Row)

When we compile the program, we would have to instruct the implementation
what to do with VideoRAM, for example, by passing a flag like:

154 CHAPTER 9. MEMORY AREAS

--region VideoRAM=0xB8000

An implementation may also accept regions with sizes and then check that
the areas in a particular region really fit in the region. If more than one
area is declared to be in the same region, an implementation would require
some instruction on how to organize the areas in the region. This approach
might seem a little vague, but we leave it vague on purpose so that we can
accommodate various different ways to associate memory areas with external
regions.

Clearly, working with such external areas is not entirely safe because
nothing in the program guarantees that the external area corresponds to the
declared type in the program. Notice, however, that the area declaration
makes explicit the assumptions that we have about the external area. Fur-
thermore, if the external area really corresponds to the declared type, then
we know that our program will preserve these constraints (e.g., it will not be
able to write outside of the declared area).

9.6 Alternative Design Choices

In this section, we discuss different designs that we have considered. We list
them here because they all represent valid points in the design space. We
have experimented with some (e.g., associating alignment with areas, rather
than references), and rejected them in favor of the design we presented earlier
in this chapter. Others, such as the generalized method of initializing areas
seem promising, but we leave experimenting with them as future work.

9.6.1 Initialization

Our design adopts a simple method for initializing memory areas: we simply
fill areas with 0. This has the benefit of being simple, and it does not require
any space in a binary file to store the areas. The main draw-back of this
approach is that memory areas may not contain types for which 0 is not a
valid value. The main example for such types were references but, by the
same principle, we would also have to reject bitdata types that cannot contain
0.

Default Values. We could relax this restriction in several different ways.
(If we were to do so, then we would have to remove the method memZero from

9.6. ALTERNATIVE DESIGN CHOICES 155

the SizeOf class). As we saw in Section 9.5, there is a class AreaDecl that
identifies the types that may be introduced with area declarations. This
class contains a method to initialize the areas when they are created. The
instance that we provided uses the function memZero to fill the area with 0s:
Of course, an implementation may arrange for areas to be filled with 0 in
different ways (e.g., by placing them in the bss segment). A different option
would be to provide different instances for different types. This approach
is more flexible because it allows us to initialize different types of areas in
different ways. Still, this is not as useful as it may appear at first because,
for some types, there is no good default value. For example, there is no good
way to pick a default value for reference types unless we assume that there
is some default area that all references of a particular type should point to.
This is not likely to be useful in practice because the implementation would
spend time initializing all references to point to the default area and then
the program would have to spend some more time to initialize references to
their actual values.

Initializers. A more useful feature would be to have a general mechanism
for initializing areas on a per-declaration basis. We could do this by associat-
ing an initializer type with every area type. The initializers for a particular
area are abstract values (i.e., of kind *) that can be used to initialize the
area. We could encode this relation with another class:

class Initializer (r :: Area) (t :: *) | r t

instance Initializer (LE (Bit 32)) (Bit 32)

instance Initializer (BE (Bit 32)) (Bit 32)

instance Initializer (Array n a) (Ix n → Initializer a)

These declarations specify that, to initialize a memory area containing a
stored Bit 32 value (in either encoding), we must use a Bit 32 value. To ini-
tialize an array, however, we provide a function that maps array indexes to
initializers for the appropriate element (the type Ix n is discussed in Chapter
10, but it is essentially a subset of the natural numbers that are valid array in-
dexes). For example, the initializer for an area of type Array 8 (LE (Bit 32))

would be a function of type Ix 8 → Bit 32. Note that this a pure function,
which means that we cannot use the values stored in areas to initialize the
array. Clearly, this restricts us in how we can initialize areas, but it also has
the benefit that we do not need to worry that an initializer is using a value
stored in an area that has not itself been initialized yet. Here is an example

156 CHAPTER 9. MEMORY AREAS

of how we may use initializers to define an area that contains a reference to
itself.

struct List a where

hd :: a

tl :: Ptr (List a)

area cycle = (hd = 0, tl = NotNull cycle) :: List (Stored (Bit 32))

This example declares a structure type with two fields. We then declare an
area that uses the same structure and we provide an initializer for it, which
creates a circular list. The initializer for a structure type is a record, whose
fields contain initializers for the fields of the structure.

Marshalling It is interesting to note that there is a similarity between
the class Initializer and ValIn because they both specify the kind of val-
ues stored in an area. Another point in the design space would therefore
be to unify these two classes, replacing Initializer with ValIn, and pro-
viding extra instances for arrays and structures as we did for initializers.
The operations to read and write from such areas would essentially marshal
data between memory areas and the abstract heap: arrays would be turned
into abstract arrays (i.e., functions), while structures would be converted to
records.

Uninitialized References. Yet another way to deal with initialization of
areas would be to introduce a new type for uninitialized references, say:

URef :: Nat → Area → *

We would then change the instance for the AreaDecl class to use URef, rather
than ARef, and we could eliminate the initialize methods. Because URefs do
not belong to the ValIn class, we would not be able to manipulate uninitial-
ized areas. To initialize areas, we would use a function that would marshal-
out a value into an area, after which it would return an ARef to the area:

init :: Align a ⇒ URef a r → Initializer r → IO (ARef a r)

This method is a little more general than the previous one in that it allows
us to use the values from memory areas that have already been initialized. A
draw-back of this approach is that we cannot use the global reference values

9.6. ALTERNATIVE DESIGN CHOICES 157

directly because they have the uninitialized reference type. Instead, after
initializing an area, we have to pass the ‘new’ reference to all functions that
need to use it.

9.6.2 Dynamic Areas

In some applications, programmers may prefer to work with a more dynamic
forms of memory area, for example, in which it is possible to allocate and
deallocate memory areas on demand. As is, our design does not support
such operations. There are a few different ways in which we could generalize
the design. For example, we could add an operation to allocate a new area
dynamically, perhaps like this:

newArea :: AreaDecl t ⇒ IO t

The IO effect is there because this operation has a side effect (e.g., it allocates
a new area, and the operation may fail). To deallocate areas we have a
number of different choices: (i) do not deallocate areas; (ii) garbage collect
memory areas; (iii) use an explicit deallocation schema, perhaps using the
techniques developed for working with memory regions [35]. The first option
is useful if the areas are used for communication with external processes, but
we do not statically know how many areas we will need. Such options are
also useful for systems that perform some dynamic configuration at startup.
Adding a garbage collector could enable us to reuse some memory used by
areas. Notice that this collector does not need to use the same algorithm
as the collector for the abstract heap (e.g., we probably want a collector
that does not move areas). Writing a collector for memory areas is not
entirely trivial because we would have to deal with references that point in the
middle of areas (objects) (e.g., a pointer to the 5th element of an array). The
third option, providing programmers with the ability to deallocate areas, is
more low-level than having a garbage collector, but gives programmers more
control over the life-time of areas. Here, the main issue is how to make the
system safe (i.e., how to avoid using areas that have been deallocated while
there are still pointers to those structures in other parts of the program).
A promising line of research in this direction is to use regions analysis and
linear/unique types [94], and indeed these ideas have already been used in
the design of some languages [46, 79].

158 CHAPTER 9. MEMORY AREAS

9.7 Summary

In this chapter, we described the basics of our design for working with data
that has explicit memory representation. We introduced a new kind, Area,
that classifies descriptions of contiguous memory regions. Programmers iden-
tify and manipulate such memory regions via references. The type of a ref-
erence contains a description of the memory region at the given address, as
well as an alignment constraint. References support only a limited set of
operations, which preserve the invariants specified by their types.

There are two ways to introduce references to a program: (i) by using area
declarations; (ii) by using a trusted external source (i.e., an external function
that produces a reference value). The areas defined with area declarations
occupy disjoint regions of memory and have a life-time that is as long as the
execution of the program.

The following declarations provide a summary of the types and (over-
loaded) functions that we used in this chapter:

-- Types of kind Area

BE :: * → Area -- big-endian

LE :: * → Area -- little-endian

Array :: Nat → Area → Area -- array of areas

-- References

ARef :: Nat → Area → * -- alignment, area type

-- Valid alignments

Align :: Nat → Pred

-- Well-formed area types

class SizeOf r (n :: Nat) | r n where

sizeOf :: ARef a r → Int

memCopy :: (Align a,Align b) ⇒ ARef a r → ARef b r → IO ()

memZero :: (Align a) ⇒ ARef a r → IO ()

-- Areas containing stored values

class ValIn r t | r t where

readRef :: (Align a) ⇒ ARef a r → IO t

writeRef :: (Align a) ⇒ ARef a r → t → IO ()

Chapter 10

Structures and Arrays

In this chapter, we focus on memory areas that contain sub-areas, such as
user-defined structures and arrays. Section 10.1 describes struct declara-
tions, which are used to declare user-defined memory areas. Section 10.2
describes how to access array elements. Section 10.3 discusses functions that
allow us to change the ‘view’ on a particular region of memory. Finally, in
Section 10.4 we provide a summary of our design for working with memory
areas1.

10.1 User Defined Structures

As we have already discussed in Chapter 9, programmers may define new
types of kind Area using struct declarations. In this section, we describe the
details of this new form of declaration. The syntax of user defined Area types
resembles the syntax of Haskell’s class declarations:

struct struct-head where

fields

field = label :: type -- Labeled field

| type -- Anonymous field (padding)

| .. -- Computed padding

1The material in this Chapter is based on the following paper:

Iavor S. Diatchki and Mark P. Jones. Strongly Typed Memory Areas. In Proceedings

of ACM SIGPLAN 2006 Haskell Workshop., pages 72–83, Portland, Oregon, September,

2006.

159

160 CHAPTER 10. STRUCTURES AND ARRAYS

The head of a struct declaration is similar to a class declaration, in that it
specifies the name for the structure, together with optional type parameters,
context, and attributes. We shall discuss attributes shortly, but syntacti-
cally, they are written in the same place where we specify the functional
dependencies for a Haskell class. The fields of the structure determine the
layout of the corresponding memory area: the first field is placed at the low-
est memory addresses, and subsequent fields follow at increasing addresses.
As with Haskell’s class declarations, syntactically we may use either implicit
or explicit layout to specify the list of fields.

As an example of a user-defined structure, consider the following decla-
ration which describes the static part of the header of an IPv4 packet that
might be used in a network protocol stack:

struct IP4StaticHeader where

ipTag :: Stored IPTag

serviceType :: Stored ServiceType

total_length :: BE (Bit 16)

identification :: BE (Bit 16)

fragment :: BE Fragment

time_to_live :: Stored (Bit 8)

protocol :: Stored Protocol

checksum :: BE (Bit 16)

source_addr :: BE Addr

destination_addr :: BE Addr

This declaration introduces a new type, called IP4StaticHeader, which is of
kind Area. The area that it describes is made up of a number of adjacent
stored values, the first (at lowest address) being ipTag. Note that, in this ap-
plication the network standard specifies that multi-byte values are transmit-
ted using big-endian encoding. For this reason, it is particularly important
to use the BE constructor, so that the multi-byte fields of IP4StaticHeader

are interpreted correctly, even on platforms where the default encoding is
little-endian.

10.1.1 Accessing Fields

Structures have operations that allow us to access their sub-components using
the labels on their fields. We can reuse the record system from Chapter 7
to avoid introducing a new notation for accessing the fields of a structure.

10.1. USER DEFINED STRUCTURES 161

In this case, the record values are references to user defined memory areas.
The type of the fields of such records are references to the sub-components of
the structure. For example, the declaration of IP4StaticHeader introduces
instances similar to the following:

instance Field’total_length (Ref IP4StaticHeader) (Ref (BE (Bit 16)))

These instances enable us to obtain references to the sub-components of a
field using the standard record operations. For example, here are two different
ways to read the value stored in the total_length part of an IP4StaticHeader:

getLen1 r = readRef r.total_length

getLen2 { total_length = l } = readRef l

The first function uses a projection operation to obtain a reference to the field,
while the second uses a record pattern. Notice that the record operations are
pure because they just compute a reference to the field. To access the value
that is stored in the corresponding area, we still need to use the readRef

function. The references produced by the projection operations are based on
the structure declaration, and so they are guaranteed to be valid references.

Recall that in Chapter 7, we also used the class UpdField, which had
a method for updating the value of a field. We do not provide instances
of UpdField for user-defined structs because this operation does not make
sense: the values of the fields in such ‘records’ are at fixed offsets and we
cannot change them to arbitrary references.

10.1.2 Alignment

The example instance for the field total_length is a little simplified because
it omits the alignments on the references. The real instance that we generate
from the structure declarations computes an alignment for the sub-field that
we access. This alignment depends on two parameters: the alignment of
the entire structure, and the offset of the field within that structure. The
alignment of the reference to the resulting field is computed by taking the
greatest common divisor of these two parameters. To see why this is the case,
recall that, if a structure is aligned on an a-byte boundary, then its address
must be k ∗ a for some natural number k . The address of the field that is n
bytes from the beginning of the structure would therefore be k ∗ a + n. This
address is aligned on any byte boundary, b, that divides k ∗a +n. Therefore,

162 CHAPTER 10. STRUCTURES AND ARRAYS

b n

ARef a S ARef b T

Figure 10.1: Alignment of a Field

to ensure that b is a valid alignment for the field, it has to divide both a
and n, because, in general, we do not know the value of k . For example, if a
structure is aligned on a 4 byte boundary (i.e., a = 4), a field that is at offset
6 bytes (i.e., n = 6) would be aligned on any boundary that divides both 4
and 6 (i.e., 1 or 2).

At this point we face a design choice: (i) we may fix the alignment of
the field to the largest possible alignment, given by the greatest common
divisor of a and n; or (ii) we may leave the alignment polymorphic, subject
to the constraints that it divides both a and n. This choice does not affect
the expressiveness of programs, but it has an impact on how programmers
work with the fields. Choice (i) leads to more concrete types in the program
because, if we know the alignment of a structure reference and the offset of
the field, then we know the exact alignment of the field. The upside of this is
that we tend to infer simpler types, and also we pose simpler problems to our
constraint solver. The down-side is that, in some situations, programmers
may have to ‘forget’ the alignment constraints on a reference explicitly before
they can use it, with a function like this one:

realign :: (GCD a b = b) ⇒ ARef a t → ARef b t

This would happen if a function expects a 1-byte aligned reference as an
argument, but instead we have a 4-byte aligned reference. Such casts would
not be necessary if we left the alignment of sub-fields polymorphic (although
the same situation may arise for other reasons). Besides inferring slightly
more complicated types, option (ii) has the draw-back that it makes it easier
to write programs that are ambiguous. This happens when there is not
enough information in the program to determine what alignment to use when
manipulating a reference. In contrast, this is less frequent if we use option (i)
because then we would simply use the largest possible alignment. We could,
of course, avoid such ambiguities by using type annotations to specify the
alignment explicitly, but this would clutter the program, because option (ii)

10.1. USER DEFINED STRUCTURES 163

leads to quite a few ambiguities. Consider, for example, a function like the
following:

getLen :: ARef 4 IP4StaticHeader → IO (Bit 16)

getLen r = readRef r.total_length

From the definition of IP4StaticHeader, we know that r.total_length is: (i)
a reference to an area containing a big-endian 16 bit value; and (ii) it resides
8 bytes from the beginning of the structure. Using choice (i) we would infer
the type ARef 4 (BE (Bit 16)), and so this definition would be accepted. If
we use option (ii) however, the system would report an ambiguity, because
nothing in the program indicates if we should use 1,2, or 4 byte alignment,
all of which are valid.

Based on the previous discussion, we choose option (i), and so the in-
stances that we generate for the fields in a structure use the greatest com-
mon divisor to compute the alignments of the sub-fields. For example, the
full instance that would be generated for the field total_length looks like
this:

instance Field’total_length (ARef a IP4StaticHeader)

(ARef (GCD a 8) (BE (Bit 16)))

Nested Structures. When we compute the alignment of a sub-field, we
loose some information, namely the fact that field belongs to a larger struc-
ture, which itself was accessed through an aligned reference. This is why
programmers should be careful when nesting structures in code where align-
ment is important. To illustrate what how alignment information may be
lost, consider the following example:

struct Pair a b where

fst :: a

snd :: b

type L s t u = Pair (Pair s t) u

type R s t u = Pair s (Pair t u)

These types describe essentially the same memory areas: both have three
fields that are of types s, t, and u respectively. Their accessor functions,
however, have subtly different types. Consider, for example, the type of the
function the accesses the third field:

164 CHAPTER 10. STRUCTURES AND ARRAYS

thirdL :: GCD a (SizeOf s + SizeOf t) = b ⇒
ARef a (L s t u) → ARef b u

thirdL x = x.snd

thirdR :: GCD (GCD a (SizeOf s)) (SizeOf t) = b

ARef a (R s t u) → ARef b u

thirdR x = x.snd.snd

While both functions return references to the same type of area, the references
have different alignment constraints. To see this, consider the case where s is
of size 3 bytes, t is of size 1 byte, and the alignment a is 4. Then thirdL will
produce a 4 byte aligned reference, because gcd(3 + 1, 4) = 4, while thirdR

will produce a 1 byte aligned reference, because gcd(gcd(4, 3), 1) = 1.

10.1.3 Padding

In some situations, it is useful to specify that a part of a memory area is not
used. We can do this by using special ‘padding’ fields in struct declarations.
Such fields occupy space, but we do not provide accessor functions to access
the memory. Most commonly, padding is used to conform to an external
specification, or to satisfy alignment constraints for the fields of a structure.
The simplest way to provide padding in a structure is to use an anonymous
field: the programmer writes a type, but does not provide a label for it. We
can even introduce a type synonym:

type PadBytes n = Array n (Stored (Bit 8))

and then write PadBytes n in a struct to add n bytes of padding.
Some memory areas occupy a fixed amount of space, but do not utilize

all of their space. Such structures typically have a number of fields, and
then there is ‘the rest’, the unused space in the structure. To define such
structures using only anonymous fields, programmers would have to com-
pute the amount of padding in the structure by hand. To simplify their job,
we provide the computed padding field, which is an anonymous field whose
size is automatically computed from the context, and from size constraints
specified by the programmer. There can be at most one such field per struc-
ture because there is no way to specify how the available space should be
distributed between multiple padding fields. As a concrete example, consider
implementing a resource manager that allocates memory pages, each of which

10.2. WORKING WITH ARRAYS 165

is 4096 bytes long. A common way to implement such a structure is to use
a ‘free list’: each page contains a pointer to the next free page, and nothing
else. Using some more special syntax, we may describe the memory region
occupied by a page like this:

struct FreePage | size 4K where

nextFree :: Stored (Ptr FreePage)

..

This example illustrates a few new pieces of concrete syntax: (1) The optional
attribute size t is used to specify the size of the structure; an error will be
reported if the declared size is either too small, or else if there is no computed
padding field for any surplus bytes. (2) The literal 4K is just a different way
to write 4096. We also support M (for ‘mega’, times 220) and G (for ‘giga’,
times 230). Like other literals, these can be used in both types and values.
(3) Note that the .. in the above example is concrete syntax for a computed
padding field and is not a meta-notation.

10.2 Working with Arrays

In this section, we describe a simple mechanism that allows us to access
the elements of an array both efficiently and without compromising safety.
Instead of using arbitrary integers as array indexes, we use a specialized type
that guarantees that we have a valid array index:

Ix :: N → *

Values of type Ix n correspond to integers in the range 0 to n-1, so they
can be used to index safely into any array of type Array n a. (In particular,
Ix 0 is an empty type.). In this respect Ix types are a special case of the
ranged types available in the Pascal family of languages [18]. Notice that
Ix types satisfy the requirements for values that may be stored in memory
(discussed in Chapter 7), because they have a well-defined bit representation,
and because 0 is always a valid index. The BitRep instance for Ix types is
simply a bit-vector that corresponds to the index. We represent all Ix types
with the same number of bits, which, like the representations for pointers and
references, is machine dependent. There are no instances of BitData for Ix

types, because the guarantee that Ix types correspond to valid indexes would
be broken if we were to allow arbitrary bit vectors to be cast into indexes.

166 CHAPTER 10. STRUCTURES AND ARRAYS

10.2.1 Index Operations

We group the operations on indexes into a class called Index. The parameter
to the class is a natural number, and the corresponding predicate, Index n,
asserts that n may be used to form index types. In this respect, the predicate
Index resembles the predicate Align, which identifies valid alignments. It is
useful to restrict the indexes to ensure that the operations on Ix types have
well-defined semantics, and that they can be implemented efficiently. For
example, 0 is not a valid index because Ix 0 is an empty type, and therefore
we cannot get the smallest index of the type. We also mentioned that, in
memory areas, indexes occupy the space of a machine word. This places an
upper bound on the Ix types that can be used in the system, which we can
also formalize with the class Index.

class Index n where

(@) :: ARef a (Array n t) → Ix n → ARef (GCD a (SizeOf t)) t

toIx :: Int → Maybe (Ix n)

fromIx :: Ix n → Nat

bitIx :: (Width m, 2^m = n) ⇒ Bit m → Ix n

minIx :: Ix n

maxIx :: Ix n

inc :: Int → Ix n → Maybe (Ix n)

dec :: Int → Ix n → Maybe (Ix n)

We use the operation (@) to access elements of arrays. This operation
works in much the same way as the accessor functions in structures: in
particular, it is pure because it simply uses pointer arithmetic to compute
a reference to a memory area. If the area contains a stored value, then we
can use the operations from the ValIn class to manipulate the memory. The
alignment constraints are computed in the same way as for structures except
that, because we do not know the value of the index, we do not know the
exact offset of the area. This is why we use only the size of the array elements
to compute the alignment.

The operations toIx,fromIx, and bitIx are used to convert index values
to/from other types. The function fromIx is essentially the same as toBits

in that it ‘forgets’ that a value has the restrictions imposed by the Ix type.
The function bitIx converts a log n-bit vector to an Ix n value. Here, the

10.2. WORKING WITH ARRAYS 167

types ensure that we always get a valid index because log n-bit vectors have
exactly the same values as Ix n indexes. The most interesting operation is
toIx, which performs a dynamic check to turn an integer into an index.

The values minIx and maxIx are the lower and upper bounds of the Ix n

type, while inc and dec are partial functions that if possible, increment or
decrement an index by the given amount. Values of type Ix also support
operations to compare indexes for equality and ordering.

10.2.2 Iterating over Arrays

The operations that we have described so far are safe and expressive enough
to support any style of indexing because toIx can turn arbitrary numbers
into indexes. This, however, comes at the cost of a division (dynamic check),
which can be quite expensive. In this section, we explain how such overheads
can be avoided in many cases.

Programs often need to traverse an array (or a sub-range of an array).
Usually this is done with a loop that checks if we have reached the end of the
array at every iteration, and if not, manipulates the array directly without
any dynamic checks. We could program examples like this by using the inc

and dec operations of the Index class. For example, we could write a function
to sum up all the elements in an array like this:

sumArray a = loop 0 minIx

where

loop tot i = do x ← readRef (a @ i)

let tot’ = tot + x

case inc 1 i of

Just j → loop tot’ j

Nothing → return tot’

This function can be compiled without too much difficulty into code that is
quite similar to the corresponding C version, with two exceptions: (i) it prob-
ably performs two checks at every loop iteration to see if we have reached the
end of the array, one in the function inc, and another one immediately after-
wards in the case statement; (ii) it may create junk Maybe values in the heap.
This is not very nice, because this increment-and-check pattern is perhaps
the most common way in which we use indexes. It is, of course, possible that
an optimizing compiler could detect and eliminate these redundant checks by
inlining the definition of inc, and to eliminate the junk Maybe values by using

168 CHAPTER 10. STRUCTURES AND ARRAYS

vectored returns. The cost of this would be a more complicated compiler,
and perhaps slower compilation times, but on the positive side, the same
optimizations could be useful to improve other parts of the program.

An alternative to relying an a compiler optimization would be to introduce
increment and decrement patterns. The patterns either fail if we cannot
increment or decrement an index, or succeed and bind a variable to the new
value. It is interesting to note that Haskell’s n+k patterns do exactly this for
decrementing. For example, we may write the factorial function in Haskell
like this:

fact x = case x of

n + 1 → x * fact n

_ → 1

If x is a (positive) non-zero number, then the first branch of the case succeeds
and n is bound to a value that is 1 smaller then the value of x.

To support incrementing, we can use a symmetric n-k pattern (not present
in Haskell), which succeeds if we can increment an index by k and still get a
valid index. Using these ideas we can write the above loop more directly:

sumArray a = loop tot minIx

where

loop tot i = do x ← readRef (a @ i)

let tot’ = tot + x

case i of

j - 1 → loop tot’ j

_ → return tot’

We can give semantics for these two patterns by using the calculus from
Chapter 6:

(n + k) ≡ (x | Just n ← dec k x)

(n - k) ≡ (x | Just n ← inc k x)

Notice that we use a minus in the pattern to increment, and we use a plus
to decrement, which may be a little confusing at first. In practice, we expect
that programmers will not write too many explicit loops like the previous ex-
amples. Instead, they will use higher-level combinators, analogous to map and
fold for lists, that are implemented with the incrementing and decrementing
patterns. For example, we can abstract the looping part of the sumArray

example like this:

10.2. WORKING WITH ARRAYS 169

accEachIx :: Index n ⇒ a → (a → Ix n → IO a) → IO a

accEachIx a f = loop a minIx

where

loop a i = do b ← f a i

case i of

j - 1 → loop b j

_ → return b

This function, accEachIx is quite general, and can be used to give a much
more compact definition of sumArray (and, of course, also to define other
similar functions):

sumArray a = accEachIx 0 (λ tot i →
do x ← readRef (a @ i)

return (tot + x))

10.2.3 Related Work

The approach that we have described here uses range types to index safely
into arrays. Another possibility is to use singleton types [101, 36]. Singleton
types can be used to get some of the benefits of dependent types without
using a system that fully supports dependent types. The idea is that each
value of a given type is introduced as a new type that contains only the
corresponding value. For example, we can ‘lift’ the natural numbers to the
type level by using a type constructor like this:

SNat :: Nat → *

Then the type SNat 42 is a type that contains only a single value, namely
the number 42. Then we can reformulate the operations on array types
using singleton types, instead of range types, an idea described by Xi and
Pfenning [102]. For example, the function to access an element of an array
could be given a type like this:

(@) :: (m < n) ⇒ ARef a (Array n t) → SNat m

→ ARef (GCD a (m * SizeOf t)) t

This type differs from the previous type that we used, because now we know
the value of the index statically (it is recorded in the type of the second
argument). The constraint m < n ensures that the index is within the range
of the array. Because we know the value of the index we can also compute

170 CHAPTER 10. STRUCTURES AND ARRAYS

a more accurate alignment: when using a range type we had to approximate
the alignment of an element because we only knew the range of the index,
but not its actual value. Of course, in most cases when we work with arrays
we do not know the position that we need to access statically. To work
around this problem, systems that use singleton types often rely on existential
quantification to represent information that is not known statically. For
example, this is how we can define ranged types by using singleton and
existential types:

data Ix n = ∀ m. (m < n) ⇒ Ix (SNat m)

The quantifier in this data declaration introduces a type variable that is
local to the constructor. Because such type variables do not appear in the
result type of the constructor (in this case m does not appear in Ix n), they
correspond to existentially quantified types. Here is the full type of the
constructor Ix:

Ix :: ∀ m n. (m < n) ⇒ SNat m → Ix n

This type also illustrates how existential types hide information: note that
the type m appears in the argument of the constructor, but not in the result,
thus “hiding” the value of the singleton type. Now we could try to define our
old ranged array indexing operator like this:

rangedIx a (Ix n) = a @ n

Unfortunately, this does not work because the result type of the function
mentions the type (m), which is ‘hidden’ in the existential:

rangedIx :: ARef a (Array n t) → Ix n → ARef (GCD a (m * SizeOf t)) t

This is not allowed, because m is not known statically, and so it cannot openly
appear in the types of values. To work around this, we would have to declare
an explicit type for the operation, and then (paradoxically!) use the function
realign to ‘forget’ the information that we did not know in the first place:

realign :: (GCD a b = b) ⇒ ARef a t → ARef b t

rangedIx :: ARef a (Array n t) → Ix n → ARef (GCD a (SizeOf t)) t

rangedIx a (Ix n) = realign (a @ n)

To check this definition an implementation would have to prove the following:

10.2. WORKING WITH ARRAYS 171

(SizeOf t x, GCD a x = b) ⇒ GCD (GCD a (m * x)) b = b

This proof requires knowledge of the interaction between GCD and *. The
rules that we presented in Chapter 4 are quite weak and cannot prove this
equation in its polymorphic form. Of course, we could provide additional
rules to specify more fully the operations on natural numbers.

The main conclusion we can draw from this example is that a system with
singleton types and support for existential quantification is more expressive
than the system of ranged index types that we have used. This is because
singleton types enable us to specify and exploit statically known information,
but still use existential types in situations where information is not statically
known. The cost of this extra expressiveness is that it results in more complex
constraints that have to be discharged by the system. The constraints are
more complex, because existentials introduce goals with unknown variables,
which cannot be solved by simple evaluation, but instead have to be solved
using general rules.

The type system used in the designs that we have discussed so far is
based on the Hindley-Milner type system extended with qualified types. It
is also possible to use a more general type system, for example, a system
based on the calculus of inductive constructions [7]. Such type systems are
very expressive and have been used as the basis for the design of automated
proof assistants such as Coq [12]. If we were to base our design on such a
type system, then we could give the indexing operator the following type:

(@) :: (a :: Nat) → (t :: Area)

→ (ix :: Nat) → (size :: Nat) → (p :: ix < size)

→ ARef a (Array size t) → ARef (GCD a (ix * SizeOf t)) t

This type requires some explanation. The arguments a and t specify the
alignment and the type of elements for the array that we are indexing. Note
that in this system we do not need to introduce a new kind Nat but, instead,
we may reuse the type Nat. The arguments ix, size and p specify the index of
the element that we need to access, the size of the array, and a proof that the
index is not outside of the array bounds. The final argument is a reference
to the array that is being indexed. The functions GCD and (*) are ordinary
functions that manipulate natural numbers. The function SizeOf computes
the sizes of Area types. Finally, the relation (<) is encoded as a type by using
the ideas of the Curry-Howard isomorphism [90].2

2We could reduce the number of arguments in the type by packaging some of the

arguments together: for example, we could store references to arrays together with their

172 CHAPTER 10. STRUCTURES AND ARRAYS

Besides the fact that such type systems are very expressive, they are also
quite elegant because the language treats uniformly values, types, proofs,
and properties. Unfortunately, the generality of the system makes the static
analysis of programs much more complex. For example, full type inference
for such systems is not possible, however various systems may still support
limited forms of type inference (e.g., Cayenne’s hidden arguments [4]). Fur-
thermore, blurring the distinction between types and values makes the gen-
eration of good code more complex because the compiler has to determine
which parts of the program are needed at run-time, and which parts rep-
resent static information that is not required while executing the program.
Consider, for example, the arguments a (alignment) and ix (index) from the
previous type signature. In the signature they appear identical (i.e., they are
both values of type Nat). However, we might expect that the alignment of the
reference is a static property, while the index of the element that we need to
access is a dynamic value. There are various ways to work around this prob-
lem, for example, Coq introduces different sorts for terms that correspond to
statically known information and dynamic values, while Cayenne [4] extends
the type-system to track terms that need to be represented at run-time.

In summary, our design is fully compatible with a type system that is
based on the calculus of inductive constructions. However, in this dissertation
our goal is to explore how far we can get by using the more restricted system
of Hindley-Milner with qualified types. Our reason for this choice is that
this type system has a number of nice properties, and has proved to work
remarkably well in the design of Haskell.

10.3 Casting Arrays

In this section, we discuss a number of operations that are used to change
the description of a memory area. Most of the operations are like type
casts in C/C++, in that they do not need to perform any work at run-time.
Unlike C/C++ however, we provide only a limited set of casts that does not
compromise the invariants we enforce with types.

sizes, and we could also group array indexes together with the proof that they are in

bounds, thus recovering a type similar to Ix.

10.3. CASTING ARRAYS 173

10.3.1 Arrays of Bytes

One set of casting operations deals with converting between structured de-
scriptions of memory areas and arrays of bytes. These operations are re-
stricted to memory areas that contain only values in the BitData class, a
property formalized with the class Bytes:

type BytesFor t = Array (SizeOf t) (Stored Byte)

class Bytes t where

fromBytes :: ARef a (BytesFor t) → ARef a t

toBytes :: ARef a t → ARef a (BytesFor t)

instance (BitData t (8 * n)) ⇒ Bytes (BE t)

instance (BitData t (8 * n)) ⇒ Bytes (LE t)

instance (Bytes t) ⇒ Bytes (Array n t)

The instance for arrays allows turning an array of structured data into an
array of bytes. Programmers may also use a deriving mechanism to derive
instances for user defined structures. These only work if the system can
ensure that all of the fields of a structure are in the Bytes class.

The functions toBytes and fromBytes resemble the bit operations toBits

and fromBits from Chapter 7 but they work on memory areas, instead of bit
vectors. There is an important difference, however, because memory areas
are mutable. It was beneficial to place fromBits and toBits into separate
classes, because it enabled us to distinguish two forms of bitdata: one that
is more abstract, because it does not contain arbitrary bit patterns, and
another that is more like a ‘view’ [93] on a bit vector. Placing fromBytes

and toBytes into separate classes does not lead to the same distinction for
memory areas. Each of these operations provides us with two different views
on the same memory region. Because memory is mutable, whenever we have
two different views on the same region, we can perform ‘casts’ by writing to
memory through the one view, and reading back from it through the other.
This is why we allow only types that belong to the BitData class to be stored
in memory areas that support casting to byte arrays.

To see why this restriction is important consider the following example,
which should be rejected:

badIx :: Ref (LE (Ix 8)) → IO (Ix 8)

badIx r = do let bs = toBytes r :: Ref (Array 4 (Stored (Bit 8)))

174 CHAPTER 10. STRUCTURES AND ARRAYS

writeRef (bs @ 0) 10

readRef r

This function attempts to invalidate the property that the type Ix 8 contains
only the values {0 .. 7} by converting the reference r—which points to an
area containing an index—into a reference bs that points to an array of
bytes. The problem is that both of these references point to the same region
of memory but they have incompatible types. This allows us to use bs to
place 10 (an invalid value for Ix 8) in the memory region and then use r

to read a malformed Ix 8 value. In our design, the function badIx is ill-
typed because the use of toBytes requires that we discharge the predicate
Bytes (LE (Ix 8)). This, in turn, amounts to discharging the predicate
BitData (Ix 8) (8 * n) but there are no instances of BitData for Ix types.

10.3.2 Reindexing Operations

Another useful set of casting operations involve array indexes. These opera-
tions do not perform any computation but instead, they change the way that
we perform indexing on arrays. For each casting operation we also provide
a corresponding reindexing function that allows us to convert indexes of the
original array to indexes in the new array.

The first casting operation allows us to split an array into two smaller
arrays, at a statically known position:

splitArray :: (Index x) ⇒ Ref (Array (x + y) t) →
(Ref (Array x t), Ref (Array y t))

subIx :: (Index x) ⇒ Ix (x + y) → Either (Ix x) (Ix y)

The corresponding operation on indexes is called subIx, and it subtracts x

from its argument. If the subtraction is successful (i.e., the result is not
negative) we return a Right value, otherwise we return the index unmodified
as a Left value with a more precise type. This is exactly what we need to
convert indexes of the original array into indexes of either the left or the right
sub-array. For example, if we split an array with 10 elements into two parts:
one with 3 and the other with 7 elements, then index 5 of the original array
would correspond to index 2 of the second array (i.e., Right 2).

We can formalize the relation between splitArray and subIx with the
following equation:

10.3. CASTING ARRAYS 175

a @ i = let (a1,a2) = splitArray a

in case subIx i of

Left j → a1 @ j

Right j → a2 @ j

Here, a is a reference to an array and i is an index of a. The equation asserts
that indexing with i into a yields the same reference, as splitting a into two
parts, converting the index i, and then using the result to index into the
corresponding sub-component of a.

In the type of splitArray above, we did not show the alignments on the
references for simplicity. If we take the alignments into consideration, then
we get the following type:

splitArray :: (Index x) ⇒ ARef a (Array (x + y) t) →
(ARef a (Array x t),

ARef (GCD a (x * SizeOf t)) (Array y t))

The address of the left sub-array is the same as the address of the original
array so it inherits the same alignment. We compute the alignment of the
right sub-array using the method that we described in Section 10.1 (take the
GCD of the alignment of the whole structure and the offset within the structure
where the sub-component starts).

Another useful operation is to convert a flat array into an array of arrays.
We can do this with the function toMatrix:

toMatrix :: ARef a (Array (x * y) t) → ARef a (Array x (Array y t))

divIx :: (Index y) ⇒ Ix (x * y) → (Ix x, Ix y)

This function splits an array with (x * y) elements into an array with x

elements, each of which is an array with y elements (this operation does not
change the address of the array, so the alignments of the references are the
same). The corresponding operation on indexes is divIx and it divides its
argument by y. The resulting pair contains the quotient and the reminder
of the division. This is what we need to convert an index of the original
array into a pair of indexes for the new view. For example, if we turn an
array with 256 elements into 64 arrays of 4 elements each, then index 11 of
the original array would correspond to the pair (2,3). We can formalize the
relation between toMatrix and divIx with the following equation:

a @ x = let (i,j) = divIx x

in toMatrix a @ i @ j

176 CHAPTER 10. STRUCTURES AND ARRAYS

In this equation, a is a reference to an array and x is an index of a. The
equation asserts that indexing with the converted index into the converted
array, is the same as indexing with original index in the original array.

We can also perform a casting operation that is the opposite of toMatrix.
It turns an array of arrays into a single flat array, and its name is fromMatrix:

fromMatrix :: ARef a (Array x (Array y t)) → ARef a (Array (x * y) t)

mulIx :: Index (x * y) ⇒ Ix x → Ix y → Ix (x * y)

The corresponding operation on indexes converts a pair of indexes identifying
an element of the original array, into a single index of the flat array (notice
that we have curried the type of mulIx). For example, if we convert an array
that has 4 elements, each of which is an array with 16 elements into a single
array of 64 elements, then the pair of indexes (2,1) in the original array
would correspond to the index 17 of the flattened array. We can formalize
the relation between fromMatrix and mulIx with the equation:

a @ i @ j = fromMatrix a (mulIx i j)

In this equation, a is a 2-dimensional array, i is an index in the first dimen-
sion, and j is an index in the second dimension. The equation asserts that
indexing with i and j in the original array, is the same as indexing with
mulIx i j in the flattened array.

Based on the duality between fromMatrix and toMatrix we might ex-
pect an operation joinArray that performs the opposite transformation to
splitArray. Such an operation would have the type (in its curried form):

joinArray :: Ref (Array x t) → Ref (Array y t) → Ref (Array (x+y) t)

To define this operation as a casting function we would need the arguments
to be references to two adjacent arrays. However, nothing in this type en-
forces this requirement, so we cannot define a casting function of this type.
This observation emphasizes the point that the function splitArray looses
some information, namely that the resulting references point to adjacent
pieces of memory. For this reason, programmers should be careful when
using splitArray.

The function splitArray looses information because its result uses ordi-
nary pairs, which are not aware of explicit memory issues. We can define an
alternative version of splitArray that does not loose information (and hence,
it has an inverse) by using a pairing structure:

10.3. CASTING ARRAYS 177

struct Pair a b where

fst :: a

snd :: b

This structure describes a memory area that has two adjacent components,
one of type a and the other of type b. Using Pair, we can define a new version
of splitArray (we shall refer to the other version as oldSplitArray) like this:

splitArray :: ARef a (Array (x+y) t)

→ ARef a (Pair (Array x t) (Array y t))

subIx :: (Index x) ⇒ Ix (x + y) → Either (Ix x) (Ix y)

This new version of splitArray works in a similar fashion to the old one,
except that the result type captures the fact that when we split an array we
get two adjacent arrays. The function subIx remains unchanged but we need
to modify the equation that relates splitArray to subIx:

a @ i = let b = splitArray a

in case subIx i of

Left j → b.fst @ j

Right j → b.snd @ j

The equation asserts the same fact as before but, now we have to use the
projection functions fst and snd to obtain references to the two parts of an
array. Notice that this version of splitArray is more general than the old
one because we can use it to recover the old behavior (but not vice versa):

oldSplitArray a = let b = splitArray a

in (b.fst, b.snd)

We can also define the dual operation of splitArray, which we shall call
joinArray:

-- casting operator

joinArray :: ARef a (Pair (Array x t) (Array y t))

→ ARef a (Array (x+y) t)

-- reindexing functions

leftIx :: (Index (x+y), Index y) ⇒ Ix x → Ix (x + y)

rightIx :: (Index (x+y), Index x) ⇒ Ix y → Ix (x + y)

178 CHAPTER 10. STRUCTURES AND ARRAYS

-- equations

a.fst @ i = joinArray a @ leftIx i

a.snd @ j = joinArray a @ rightIx j

In the equations, a is a reference to a Pair of arrays, while i and j are indexes
into the first and second array respectively. The two equations jointly state
that we get the same results when we index into the two parts of the array
separately, or when we join the two arrays into a single array and then convert
the indexes with either leftIx or rightIx.

Note that we can define leftIx and rightIx in terms of a more general
operation for adding indexes that has the following type:

addIx :: (Index (a + b)) ⇒ Ix a → Ix b → Ix (a + b)

leftIx :: (Index (a+b), Index b) ⇒ Ix a → Ix (a + b)

leftIx a = addIx a minIx

leftIx :: (Index (a+b), Index a) ⇒ Ix b → Ix (a + b)

rightIx b = addIx maxIx b

10.4 Summary

In this chapter, we described our design for working with structured memory
areas, such as arrays and structures. We presented two groups of operations
to manipulate such areas.

The first group of operations computes references to sub-areas from ref-
erences to a structured area. These operations are automatically generated
from the types describing the areas, which ensures that we never get invalid
references. When we compute references to sub-areas we also compute align-
ment constraints for the sub-areas. To ensure that array indexes are within
bounds we use a family of numeric range types, called Ix, which are equipped
with operations that preserve their invariants.

The second group of operations allows us to change the ‘view’ on memory
areas, for example to place a structured representation on an unstructured
array of bytes. To ensure that we do not compromise the safety of the
design, we allow such conversions only for types that can be represented
with arbitrary bit-vectors, which is formalized with the class Bytes.

The following is a summary of the operations that we discussed in this
chapter:

10.4. SUMMARY 179

-- User-defined areas

struct Pair r s where

fst :: r

snd :: s

-- (generated)

(.fst) :: ARef a (Pair r s) → ARef a r

(.snd) :: ARef a (Pair r s) → ARef (GCD a (SizeOf r)) s

class Index n where

(@) :: ARef a (Array n t) → Ix n

→ ARef (GCD a (SizeOf t)) t

-- Conversions

toIx :: Int → Maybe (Ix n)

fromIx :: Ix n → Nat

bitIx :: (Width m, 2^m = n) ⇒ Bit m → Ix n

minIx :: Ix n

maxIx :: Ix n

-- Dynamically checked index arithmetic

inc :: Int → Ix n → Maybe (Ix n)

dec :: Int → Ix n → Maybe (Ix n)

-- Statically checked index arithmetic

addIx :: (a + b = n) ⇒ Ix a → Ix b → Ix n

subIx :: (a + b = n, Index a) -- subtract a

⇒ Ix n → Either (Ix a) (Ix b)

mulIx :: (a * b = n) ⇒ Ix a → Ix b → Ix n

divIx :: (a * b = n, Index b) -- divide by b

⇒ Ix n → (Ix a, Ix b)

-- Views on byte arrays

type BytesFor t = Array (SizeOf t) (Stored (Bit 8))

class Bytes t where

fromBytes :: ARef a (BytesFor t) → ARef a t

toBytes :: ARef a t → ARef a (BytesFor t)

180 CHAPTER 10. STRUCTURES AND ARRAYS

-- Views on arrays

splitArray :: ARef a (Array (x+y) t)

→ ARef a (Pair (Array x t) (Array y t))

joinArray :: ARef a (Pair (Array x t) (Array y t))

→ ARef a (Array (x+y) t)

toMatrix :: ARef a (Array (x * y) t)

→ ARef a (Array x (Array y t))

fromMatrix :: ARef a (Array x (Array y t))

→ ARef a (Array (x * y) t)

Part III

Examples and Implementation

181

Chapter 11

Example: Fragments of a
Kernel

In this chapter, we show how our design might be used in practice. This
chapter does not introduce any new concepts; instead, it contains a lot of
examples. The examples have a common theme: they are different com-
ponents that may be useful in the implementation of an OS kernel, which
explains the name of the chapter. In Section 11.1 we show how to implement
a simple driver for the text console of the PC architecture. In Section 11.2
we present a brief overview of the IA-32 architecture. In Sections 11.3 and
11.4 we show how to initialize the segmentation and interrupt hardware when
the kernel starts up. In Section 11.5 we show how we might implement the
code the allows the kernel to switch between user and kernel mode execu-
tion. In Section 11.6 we show some data structures that would be useful in
the implementation of the memory manager of a kernel.

11.1 A Text Console Driver

One of the examples that we discussed in Chapter 9 was a simple text console
driver. In this section, we use the tools that we described to implement such
a driver. On the PC, the text console is a memory-mapped device, which
means that we manipulate it by writing data, in a particular format, to a
designated part of memory. For the text console, each location in its memory
area corresponds to a location on the screen. Depending on where exactly we
write, we either affect what is displayed on the screen, or how it is displayed.

183

184 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

Screen Characters A screen character is a 16 bit quantity that specifies
(i) which character to display, and (ii) how to display the character on the
screen. We can use bitdata declarations to describe the exact format of
screen characters:

bitdata SChar = SChar { attr = default_attr :: Attr, char :: Bit 8 }

bitdata Attr

= Attr { flash :: Bool, -- flashing?

bg :: Color, -- background color

bright :: Bool, -- foreground bright?

fg :: Color -- foreground color

}

default_attr :: Attr

default_attr

= Attr { fg = White, bg = Black, flash = False, bright = False }

bitdata Color

= Black as 0 | Blue as 1 | Green as 2 | Cyan as 3

| Red as 4 | Magenta as 5 | Yellow as 6 | White as 7 :: Bit 3

The type Attr describes the appearance of the character, while the actual
character is represented as an 8-bit value. The definition of SChar specifies
that if we do not provide a value for the field attr, then the compiler should
use the value default_attr.

The Memory Region The text console has 25 rows of 80 characters each.
Each row is an array of screen characters, the first element corresponds to the
left-most character on the screen. The screen is made up of 25 consecutive
rows, the first one being the row that is displayed at the top of the screen:

type Rows = 25

type Cols = 80

type Row = Array Cols (LE SChar)

type Screen = Array Rows Row

area screen in VideoRam :: Ref Screen

11.1. A TEXT CONSOLE DRIVER 185

State of the Driver Our driver uses a region of memory to store the
corrdinates of the current position on the screen, as well as the attributes
that we should use when we display characters:

area cur_col :: Ref (Stored (Ix Cols))

area cur_row :: Ref (Stored (Ix Rows))

area cur_attr :: Ref (Stored Attr)

For the purposes of this example, we have chosen to store the driver state
using memory areas. While the format of the screen is defined by the PC
architecture, the driver state is not, so we could represent it in other ways as
well. For example, it would also have been possible to store the state of the
driver in the heap, instead of in memory areas. There are also other ways
in which we could have used memory areas. For example, we could have
grouped the state into a structure, which would guarantee that the state for
the console resides in adjacent locations. This would be useful if we were to
implement support for virtual consoles, because then we could use an array
of driver states, one for each console.

Cursor movement. We may now introduce some simple operations for
moving the cursor. These operations simply manipulate the driver state
and have no effect on the hardware. A more sophisticated driver could, of
course, choose to indicate the current position of the cursor by, for example,
inverting the attributes for the character where the cursor is located, or use
the hardware cursor.

-- Move cursor to a given location

goto :: Ix Cols → Ix Rows → IO ()

goto x y = do writeRef cur_col x

writeRef cur_row y

-- Move cursor to the ‘beginning’ of the screen

goHome :: IO ()

goHome = goto 0 0

Notice that the types of the arguments to goto guarantee that we have a
valid position, so we do not need to perform any checks. Of course, we
cannot entirely eliminate checks: when we display text, if we reach the end
of a line, then we would like to continue displaying the text on the next line.

186 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

-- Move cursor to the position of the next character

goNext :: IO ()

goNext = do col ← readRef cur_col

case col of

next - 1 → writeRef cur_col next

last → goNextLine

-- Go to the beginning of the next line

goNextLine :: IO ()

goNextLine = do goDown

writeRef cur_col minVal

The monadic action goNextLine moves the cursor to the beginning of the
following line. This, of course, may also fail if we happened to be already at
the last line of the screen. In this case, we have to scroll the screen, and clear
the last line:

-- Go to the next row

goDown :: IO ()

goDown = do row ← readRef cur_row

case row of

next - 1 → writeRef cur_row next

last → scroll

-- Scroll the screen

scroll :: IO ()

scroll = loop 0 1

where

loop prev cur = do memCopy (screen @ cur) (screen @ prev)

case cur of

next - 1 → loop cur next

last → clearRow last

-- Clear a row

clearRow :: Ix Rows → IO ()

clearRow row = do a ← readRef cur_attr

let blank = SChar { char = 32, attr = a }

forEachIx (λ col →
writeRef (screen @ row @ col) blank)

11.1. A TEXT CONSOLE DRIVER 187

Driver Operations Finally, we can define the main functionality of the
driver. We provide functions to display characters, manipulate the display
attributes, and clear the screen:

-- Clear the screen

cls :: IO ()

cls = do forEachIx clearRow

goHome

-- Manipulate attributes

setArrr :: Attr → IO ()

setAttr a = writeRef cur_attr a

getAttr :: IO Attr

getAttr = readRef cur_attr

-- Display a character, move to the next position

putChar :: Bit 8 → IO ()

putChar c = do a ← readRef cur_attr

col ← readRef cur_col

row ← readRef cur_row

writeRef (screen @ row @ col)

(SChar { char = c, attr = a })

goNext

-- Display a list of characters

putStr :: [Bit 8] → IO ()

putStr xs = mapM_ putChar xs

-- Display a list of characters, go to the next line

putStrLn :: [Bit 8] → IO ()

putStrLn xs = do putStr xs

goNextLine

Our definition of cls clears the screen one row at a time, and every row
is cleared one screen character at a time. We could get a more efficient
implementation if we were to clear two characters at the same time. We could
do this, by viewing the screen memory region as an array of Stored (Bit 32),
rather then the more structured view that we use in the rest of the driver.
Here is an example of how we could do this:

188 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

cls’ :: IO ()

cls’ = do a ← readRef cur_attr

let blank = toBits (SChar { char = 32, attr = a })

blank2 = blank # blank

arr :: Ref (Array (25 * 40) (LE (Bit 32)))

arr = fromBytes (toBytes videoRAM)

forEachIx (λ i → writeRef (arr @ i) blank2)

It is interesting to note that the type checker does quite a lot in this dec-
laration. For example, it checks that the size of the memory for the screen
is a multiple of 4, as otherwise, we would not be able to clear the entire
screen using 32-bit words. Still, we need the type annotation on the array
arr (or alternatively an annotation on the reference in the writeRef opera-
tion) because it specifies the encoding that we want to use when we write to
memory.

11.2 Overview of IA-32

In this section, we present some of the details of the IA-32 architecture,
when executing in protected mode. Our information is based on the Software
Developer’s Manual [45] provided by the Intel corporation.

The hardware provides a number of fairly advanced features, including
paging, segmentation, multitasking, and four different protection levels at
which code may execute. Depending on its particular design, a kernel may
utilize these features to a greater or lesser extent but, at the very least, a
kernel should be able to initialize the hardware correctly.

In protected mode, the processor works with virtual (sometimes called
logical) addresses that are used to address a 4GB linear space. The paging
hardware translates virtual addresses to concrete physical addresses that are
then used to retrieve or store information. The abstraction provided by the
paging hardware is often used to support multiple processes in an OS: by
manipulating the translation between virtual and physical address, kernels
can control how different processes interact through memory; similar mecha-
nisms are also used to support a collection of processes whose total demand
for memory exceeds the available physical memory—the memory for inactive
processes can be backed up onto secondary storage to provide more working
space for active processes.

11.3. SEGMENTS 189

The segmentation hardware of the IA-32 is used to split the linear space
into a number of segments. A segment is a contiguous region in linear space
that has some properties associated with it. Many instructions are executed
with respect to a particular segment, so memory references are interpreted
as offsets in the relevant segment. Thus, to obtain a linear address, the
hardware adds the base of the relevant segment and then checks that the
resulting linear address is within the segment boundaries (the hardware also
performs other checks). Segmentation is not heavily used by modern kernels,
but there is no way to turn it off on the IA32. To work around this, kernels
often setup the machine once and forall at boot time with segments that span
the entire linear space.

Multitasking is another feature of the IA-32 that does not appear to
be heavily used by current kernels, perhaps because it tends to be fairly
heavyweight. Still, the IA32 architecture requires at least one task-state
segment, which is used while switching between the execution of kernel and
user code. Task-state segments are used to save the state of a task, and are
a part of the hardware implementation of multitasking.

11.3 Segments

The IA-32 has 6 segment registers that specify the code segment (CS), stack
segment (SS), and four data segments (DS, ES, FS, GS). Instructions that
affect the instruction pointer, such as jumps, are executed with respect to
the code segment. As the name suggests, the stack segment is used for
instructions that manipulate the stack, and the data segments are for different
instructions that manipulate memory. In this section, we describe a simple
way to initialize the segmentation hardware. As before, the details follow the
specifications in the Intel documentation.

11.3.1 Segment Selectors

The segment registers are 16 bit registers, that contain segment selectors,
which are used to identify the different segments. We use a bitdata declara-
tion to define the exact format of segment selectors:

bitdata SegSel = SegSel { segIx :: Bit 13

, table :: SegTable

, rpl :: Bit 2 }

190 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

bitdata SegTable = GDT as B0 | LDT as B1

The field segIx is an index into a table of segment descriptors, each of which
describes a particular segment. The hardware supports indexing into two
different tables containing segment descriptors: the local descriptor table
(LDT), and the global descriptor table (GDT). The field table indicates
which table should be consulted to find the appropriate segment descriptor.
The last field, rpl, is the requestor’s privilege level, which is used to restrict
access to segments to particular privilege levels.

Because the index is a 13 bit quantity, the table can contain up to 8192
entries. A typical OS kernel that does not make use of segmentation is
likely to use only five: a code and data segments for kernel and user mode
respectively, and a special segment that contains the state of the current (and
perhaps only) task:

seg_kernel_code = SegSel { segIx = 1, table = GDT, rpl = 0 }

seg_kernel_data = SegSel { segIx = 2, table = GDT, rpl = 0 }

seg_user_code = SegSel { segIx = 3, table = GDT, rpl = 3 }

seg_user_data = SegSel { segIx = 4, table = GDT, rpl = 3 }

seg_tss = SegSel { segIx = 5, table = GDT, rpl = 3 }

11.3.2 Segment Descriptors

For the proper operation of the kernel, we need to provide at least a global
descriptor table, which contains the descriptions of the various segments. A
descriptor table is simply an array of segment descriptors:

type DescTab n = Array n SegDesc

area gdt :: ARef 8 (DescTab 6)

The table contains 6 entries rather then the 5 we need, because the Intel
specification states that the first entry in the table should contain a null
segment descriptor.

Segment descriptors are two words each, and have a rather peculiar for-
mat, as illustrated by the following bitdata declarations. (Not all of the type
annotations in the declarations are necessary, but the redundancy makes the
code more readable and helps to prevent layout mistakes)

struct SegDesc | size 8 where

seg0 :: Stored Seg0

11.3. SEGMENTS 191

seg1 :: Stored Seg1

bitdata Seg0 = Seg0 { baseL :: Bit 16, limitL :: Bit 16 }

bitdata Seg1 = Seg1

{ baseH :: Bit 8

, gran :: Gran

, userBit = 0 :: Bit 1

, limitH :: Bit 4

, present :: Bool

, dpl :: Bit 2

, segType :: SegType

, baseM :: Bit 8

} as (baseH :: Bit 8)

(gran # B10 # userBit # limitH :: Bit 8)

(present # dpl # segType :: Bit 8)

(baseM :: Bit 8)

bitdata Gran = InBytes as B0 | InPages as B1

The segment selector contains the starting address of the segment (scattered
among the fields baseL, baseM, baseH), and the size of the segment, which is a
20 bit field (contained in limL and limH). The segment size can be interpreted
in two different ways, depending on the field gran. If gran is set to InBytes,
then the limit is in bytes. Otherwise, if gran is InPages then the segment
limit is scaled by 4K (the size of a page). The field userBit is available for
use by systems programmers, and the other fields specify other properties of
the segment: dpl is the privilege level, and segType is the type of segment
that we are describing.

There are three types of segment that are of interest, as illustrated by the
SegType bitdata type:

bitdata SegType = DataSeg { expDown = False :: Bool

, writable = True :: Bool

, accessed = True :: Bool }

as B10 # expDown # writable # accessed

| CodeSeg { conform = False :: Bool

, readable = True :: Bool

, accessed = True :: Bool }

as B11 # conform # readable # accessed

192 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

| TaskSeg { busy = False :: Bool }

as B010 # busy # B1

Note that this declaration uses defaults to specify common settings for the
different segment types.

Having defined the formats of all the data involved, we can write a func-
tion that initializes an entry in the gdt table:

gdtEntry :: SegSel → SegType → Bit 32 → Bit 20 → Gran → IO ()

gdtEntry (SegSel sel) ty (baseH # baseM # baseL) (limH # limL) gran

= do let slot = gdt @ toIx (0 # sel.segIx)

writeRef slot.seg0 (Seg0 { baseL = baseL, limitL = limL })

writeRef slot.seg1 (Seg1 { baseH = baseH

, gran = gran

, limitH = limH

, present = True

, dpl = sel.rpl

, segType = ty

, baseM = baseM })

Perhaps the most interesting aspect of the function is the use of type infor-
mation to split the base and limit arguments automatically into the correct
subfields.

All that remains to be done is to use gdtEntry to initialize the global
descriptor table:

initGDT :: IO ()

initGDT = do gdtEntry seg_kernel_code (CodeSeg {}) minIx maxIx InPages

gdtEntry seg_kernel_data (DataSeg {}) minIx maxIx InPages

gdtEntry seg_user_code (CodeSeg {}) minIx maxIx InPages

gdtEntry seg_user_data (DataSeg {}) minIx maxIx InPages

gdtEntry seg_tss (TaskSeg {})

(toBits tss) (lower (sizeOf tss - 1)) InBytes

We have initialized the segments to be trivial: they all span the entire linear
space (although other options are certainly possible). The only exception is
seg_tss, which contains the state of a task. Next we describe the structure
of the task state segment.

11.3. SEGMENTS 193

11.3.3 Task-State Segment

The task-state segment,TSS, contains the state of a hardware task. We need
to have at least one of these, and it is mostly used while switching between
user and kernel mode execution. We can describe the format of the task
segment, and declare a memory area for it like this:

struct TaskSegment | size 104 where

Pad 4

esp0 :: Stored (Bit 32)

ss0 :: Stored SegSel; Pad 2

..

ioMap :: Stored (Bit 16)

area tss :: ARef 128 TaskSegment

The task-state segment is at least 104 bytes long, and in general contains a
number of fields. However, we are only planning to use a few of those, and
so we only include the fields that we need (the .. is formal notation). The
fields that we need to specify are the stack segment and stack pointer, which
change when we switch between user- and kernel-mode execution. The other
field, ioMap can be used to configure access for IO ports in user mode.

The area declaration reserves space for the TSS. We request that the
area is aligned on a 128 byte boundary: this is necessary to ensure that the
TSS resides in a single page, which is a hardware requirement.

To initialize the TSS, we just specify the stack segment and an offset
for the ioMap. We set the kernel stack just before we switch to user mode
execution (to be discussed later):

initTSS :: IO ()

initTSS = do writeRef tss.ss0 seg_kernel_data

writeRef tss.ioMap (lower (sizeOf tss))

Normally, the field ioMap should contain an offset in the segment containing
configuration for the IO ports. In the initialization code, we provide an
offset that is outside the segment, which means that access to the IO ports
is disabled. The function lower converts the 32 bit size of TSS to a 16 bit
quantity by extracting the lower 16 bits.

Having initialized all data structures appropriately, we need to tell the
machine to use our data structures. This is done with a little bit of code

194 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

that resembles assembly. It loads the appropriate machine registers with the
values we described.

do setGDT gdt

setCS seg_kernel_code

setDS seg_kernel_data

setSS seg_kernel_data

setES seg_kernel_data

setFS seg_kernel_data

setGS seg_kernel_data

ltr seg_tss

Each of these statements is an IA-32 specific primitive that is expanded to
the corresponding IA-32 instructions. For example, setCS has the following
type:

setCS :: SegSel → IO ()

11.4 Interrupts and Exceptions

In addition to initializing the segmentation hardware, we also have to ini-
tialize the machine so that it can respond to interrupts and exceptions. The
mechanism to do this is similar to what we used to initialize the segmentation
hardware. Gate descriptors (similar to segment descriptors) specify what is
to be done when a particular interrupt or exception occurs, and are stored
in an interrupt descriptor table (IDT) that is similar to the global descriptor
table.

type IDT n = Array n GateDesc

struct GateDesc where

gate0 :: Stored Gate0

gate1 :: Stored Gate1

bitdata Gate0 = Gate0 { segment :: SegSel, offsetL :: Bit 16 }

bitdata Gate1

= Gate1 { offsetH :: Bit 16, -- ignored for task gates

present :: Bool,

11.5. USER MODE EXECUTION 195

dpl :: Bit 2,

gateType :: GateType,

} as (offsetH # present # dpl # gateType # _) :: Bit 32

bitdata GateType

= Interrupt32 as B01110000

| Trap32 as B01111000

| Task as B00101 # _

area idt :: ARef 8 (IDT 256)

Despite the fact that the IA32 supports many different gates, in our small
kernel we shall use only interrupt gates.

We can initialize a single entry in the idt with the following code:

idtEntry :: Bit 8 → Bit 32 → IO ()

idtEntry n (offH # offL)

= do let slot = idt @ bitIx n

writeRef slot.gate0 (Gate0 {

segment = seg_kernel_code,

offsetL = offL

})

writeRef slot.gate1 (Gate1 {

offsetH = offH,

present = True,

dpl = 0

})

The 32 bit integer is the address of an external procedure that is to be called
when the particular exception number occurs.

11.5 User Mode Execution

The previous sections described fairly generic code to initialize the machine
on start up. In this section, we describe how a kernel might implement
support for executing multiple user mode processes. In general, this differs
from one kernel to the next; what we present is a fairly simple design that
might be suitable for a micro-kernel.

Once execution of user code starts, it continues until the occurrence of
either a hardware interrupt or a software exception. At this point, control is

196 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

transferred to the kernel, which responds appropriately and then resumes a
(possibly different) user process.

We use only two of the four privilege levels supported by the IA-32: the
kernel executes at level 0 (the most privileged level), and user code executes
at level 3 (the least privileged level). These were set up when we initialized
the various segments of the machine.

When an interrupt or an exception occurs, the machine consults the IDT
and starts execution of the appropriate handler (in the specified code seg-
ment: in our case the kernel’s code segment). The details of exactly what
happens are different depending on the privilege levels of the code that was
executing when the interrupt occurred, and the privilege level of the han-
dler. Presently, we are interested in the case when we were executing in user
mode (i.e., at privilege level 3), and the interrupt handler operates in kernel
mode (i.e., at level 0). In such situations, before executing the handler, the
hardware uses the TSS to access a kernel ‘stack’ (stack segment and stack
pointer); then it switches to this stack (by loading the appropriate registers);
finally, it pushes a the user state on the new stack. The format of the state
on the stack can be described with the following structure declaration:

struct IRet where

eip :: Stored (Bit 32) -- user’s code

cs :: Stored SegSel -- user’s code segment

; Pad 2

eflags :: Stored (Bit 32) -- state of the flags

esp :: Stored (Bit 32) -- user’s stack

ss :: Stored SegSel -- user’s stack segment

; Pad 2

In addition, for some interrupts/exceptions the hardware also pushes an error
code. After this, execution proceeds at the location specified by the IDT.

The hardware only saves the code and stack of the user process. Typi-
cally, we also need to save the other registers of the machine so that we can
restore them later before resuming the process. We can do this with the
instruction pusha, which pushes the machine registers on the stack in the
following format:

struct PushA where

edi :: Stored (Bit 32)

esi :: Stored (Bit 32)

ebp :: Stored (Bit 32)

11.5. USER MODE EXECUTION 197

; Stored (Bit 32) -- esp, unused

ebx :: Stored (Bit 32)

edx :: Stored (Bit 32)

ecx :: Stored (Bit 32)

eax :: Stored (Bit 32)

The instruction pusha saves all general purpose registers, including esp, but
we do not provide a name for the corresponding field of PushA. The reason
for this is that the value in the esp register does not contain the user’s
stack pointer. Recall that, when the hardware switches from user to kernel
execution, it updates the stack pointer using the data stored in the task-
state segment. For this reason, the user’s stack pointer is part of the IRet

structure, and not the PushA structure.
Besides saving the general purpose registers, we also save the user’s data

segment registers. The user’s stack and code segments are automatically
saved by the hardware in the IRet structure so they do not need to included
again here:

struct SegRegs where

gs :: Stored SegSel; Pad 2

fs :: Stored SegSel; Pad 2

es :: Stored SegSel; Pad 2

ds :: Stored SegSel; Pad 2

Finally, we also save the pointer to the user’s page directory, which completes
the definition of the user’s context—the information that we need to resume
a suspended process:

struct Context where

page_dir :: Stored (Bit 32)

seg_regs :: SegRegs

regs :: PushA

error_code :: Stored (Bit 32)

resume :: IRet

Having decided on the format of a user’s context we can write a little bit
of assembly code that starts a user process, given a pointer to a Context:

Expects a pointer to a ’Context’ in %eax

asmCallUser:

movl %esp, stack_top # save RTS state

198 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

movl %ebp, heap_top # ...

movl %eax, %esp # context becomes the stack

popl %eax # set page directory

movl %cr3, %ebx #

cmpl %eax, %ebx # update cr3 only if

je 1f # the pdir is different

movl %eax, %cr3 #

1: popl %gs # restore segment registers

popl %fs

popl %es

popl %ds

popa # restore other registers

addl $4, %esp # remove error code

iret # we are off to the user

First we save the state of the run-time system in some memory that belongs
to the kernel. The run-time system of our compiler is very simple so all we
need to do is save the heap and stack pointers. In general, we might also save
some of the general purpose registers. Having done that, we switch the ‘stack’
to the user’s context and pop-off the new machine state (general purpose and
segment registers). Finally, we use the instruction iret (mnemonic: return
from interrupt) which pops off the remaining state off the stack, switches to
the user’s stack, and resumes execution of the user code.

When the execution of user code is interrupted, the hardware switches to
kernel mode and start executing the relevant interrupt handler. The interrupt
handlers in our example kernel all perform essentially the same task: they
save the user state on the stack, then restore the state of the RTS, and finally
they return to the kernel indicating what happened. The assembly code that
performs these tasks is almost a mirror image of the previous piece of code,
so we’ll omit it here.

11.6 Paging

We mentioned briefly that the IA-32 translates between virtual and physical
addresses with the aid of some paging hardware. Now we shall examine this

11.6. PAGING 199

hardware in more detail. While looking at the code in this section it may
be useful to consult Figure 11.1, which illustrates the datatypes used by the
machine. The main point of control for the paging hardware is the page

Figure 11.1: The Paging Hardware of IA-32

directory, which is a table that contains 1024 page directory entries:

type PDir = Array 1024 (Stored PageDirectoryEntry)

When paging is enabled, there is always exactly one active page directory,
and its location in physical memory is stored in an internal hardware register
(called CR3). To translate a virtual address, the hardware uses the 10 most
significant bits of the address as an index in the page directory to access
a page directory entry, which specifies how to translate the virtual address.
The format of page directory entries can be defined with the following bitdata
declaration:

bitdata PageDirectoryEntry

= NoEntry

{ userBits :: Bit 31

} as userBits # B0

| PageTable

{ pageTable :: Bit 20

, userBits = 0 :: Bit 3

200 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

, global = False :: Bool

, status = PStatus {} :: PStatus

} as pageTable # userBits # global # B00 # status # B1

| SuperPage

{ physAddr :: Bit 10

, pat = False :: Bool

, userBits = 0 :: Bit 3

, global = False :: Bool

, dirty = False :: Bool

, status = PStatus {} :: PStatus

} as physAddr # _ # pat # userBits # global # B1 # dirty # status # B1

bitdata PStatus

= PStatus

{ accessed = False :: Bool

, noCache = False :: Bool

, writeThrough = False :: Bool

, user = False :: Bool

, writeable = True :: Bool

}

There are three kinds of data that may appear as an entry in a page direc-
tory. If the entry corresponding to a virtual address is of the form NoPage,
this means that the virtual addresses in that range are not mapped anywhere
in physical memory. An attempt to use such an address results in a special
exception called a page fault. Notice that such ‘blank’ entries are recognized
by a 0 in the least significant bit of the entry. The remaining bits are avail-
able for use by the systems programmer. For example, a particular memory
manager may choose to temporarily backup the data in a part of physical
memory onto some secondary storage (e.g., a hard-disk). In such a situation,
the ‘userBits’ could be used to identify the new location of the data, so that
it can be retrieved later.

Page directory entries of the form SuperPage refer to 4MB chunks of
physical memory (often called super pages). The field physAddr contains the
10 most significant bits of the physical address of the super page that contains
the data for the virtual address. The field is only 10 bits wide, because super
pages are always aligned on 4MB boundaries, and so their 22 lowest bits are
all zero. The 22 least significant bits of the virtual address are then used

11.6. PAGING 201

as an offset within the super page. To make things more concrete, consider
a virtual address (10 :: Bit 10) # (17 :: Bit 22). Now, if the 11th entry
(index 10) of the page directory is a SuperPage, then the hardware will use it
to get the address of the relevant physical super page and then add 17 to it
to get the location in memory that contains the data for our virtual address.

Super pages provide a fairly coarse granularity for manipulating memory.
The hardware also supports paging using ordinary 4KB pages. This happens
when the entry in a page directory is of the form PageTable. Then the field
pageTable contains the physical location of a page table. Page tables are
similar to page directories, and have the following format:

type PTab = Array 1024 (Stored PageTableEntry)

bitdata PageTableEntry

= NoPage

{ userBits :: Bit 31

} as userBits # B0

| Page

{ physAddr :: Bit 20

, userBits = 0 :: Bit 3

, global = False :: Bool

, pat = False :: Bool

, dirty = False :: Bool

, status = PStatus :: PStatus

} as physAddr # userBits # global # pat # dirty # status # B1

If the entry in the page directory is a PageTable, then the next 10 bits of the
virtual address are used as an index in the appropriate page table. The page
table entries are similar to page directory entries: NoPage indicates that the
corresponding virtual address is not mapped anywhere; if the entry is of the
form Page, then the field physAddr is the physical address of 4KB of physical
memory that contain the data for the virtual address.

To summarize, depending on the entry in the page directory, the hardware
views a virtual address in one of two ways:

bitdata VirtAddr = SuperP { pdirIx :: Bit 10

, offset :: Bit 22 }

| PTab { pdirIx :: Bit 10

, ptabIx :: Bit 10

, offset :: Bit 12 }

202 CHAPTER 11. EXAMPLE: FRAGMENTS OF A KERNEL

11.7 Summary

In this chapter, we presented some examples that illustrate how our language
design might be used in practice. We presented three examples, each of which
might be useful in the implementation of an OS kernel. The first example
showed a simple driver for a memory mapped device, the text console of the
PC architecture. The second example showed how to write some fairly low-
level code that is useful when we initialize the machine at boot time. The
third example showed how to program some data structures that would be
useful in the implementation of a memory manager for an OS kernel. We
managed to program the examples in a direct style, without many artificial
encodings. This gives us some confidence that our design may scale to the
needs of other systems software, as well.

Chapter 12

Implementation

12.1 Introduction

We implemented the ideas described in this dissertation in a prototype com-
piler. Developing the implementation was an important part of the design
process because it allowed us to try out different ideas and see what worked
and what did not. Furthermore, having an implementation is a first step
towards showing the feasibility of the language design. In this chapter, we
briefly describe the more interesting aspects of the back-end of our compiler.
While we have not conducted any formal measurements, the method that
we used suggests that our language design can be implemented efficiently on
modern machines.

The source language that we implemented is a strict version of Haskell,
extended with support for bitdata and memory areas. More precisely, the
front-end (syntax, type system) is similar to that of Haskell, while the back-
end is similar to that of ML. We compile this language into IA32 assembly
code, and we have a small run-time system (described in Section 12.4) that
enables us to run our programs under the Linux operating system. We also
have a modification or the run-time system that enables us to run our pro-
gram on a ‘bare’ machine (i.e., a machine without a host operating system).

The front-end of our implementations is similar to the front-ends of Haskell
implementations, extended with support for the new declarations bitdata,
struct, and area. It checks that user-specified types have valid kinds, and
then it type checks the program. We eliminate the functional predicate no-
tation (Chapter 5) during kind checking, although, in principle, we could

203

204 CHAPTER 12. IMPLEMENTATION

do that earlier. During type checking, we make type abstractions and ap-
plications explicit, as well as evidence applications and abstractions (recall
the explicit calculus from Chapter 3). We use different types of evidence for
the different predicates, for example, the evidence for the BitData class is
an integer that indicates the number of bits that are needed to represent a
value. In this respect, our implementation differs from most other Haskell
implementations, which use ‘dictionaries’ as evidence for all predicates.

The back-end of our compiler follows the ideas of Tolmach and Oliva
[91] for compiling a functional language to C, although, at the very end, we
generate assembly instead of C. We start by performing a whole program
analysis to make programs completely monomorphic by generating special-
ized instances of polymorphic functions (a technique also used by the MLton
[100] optimizing compiler for Standard ML). This approach has the bene-
fit that we can choose more efficient representations for types (e.g., we do
not need to change the representations of values when we call polymorphic
functions) and also, we can compute the evidence for overloaded functions
at compile-time. The drawback of this technique is that it does not work for
programs that use polymorphic recursion because such programs may need
an unbounded number of instantiations of a polymorphic function. Our im-
plementation rejects such programs, but it is also possible to use a hybrid
approach that specializes most functions, but still uses a uniform represen-
tation for functions that use polymorphic recursion.

After monomorphization we perform defunctionalization, which is an al-
gorithm that makes the manipulation of computation values explicit, thus
turning higher-order into first-order programs. Finally, we generate assem-
bly code.

This chapter is structured as follows: in Section 12.2 we discuss how to
implement computation values; in Section 12.3 we discuss various alterna-
tive representations for bitdata types; and in Section 12.4 we describe some
aspects of code generation and the run-time system for our compiler.

12.2 Computation Values

Throughout this work, we use a higher-order functional language with monadic
computations. This means that both functions and monadic computations
are first-class values, and so they can be passed as arguments to functions,
returned as results, or stored in data structures. To implement such values,

12.2. COMPUTATION VALUES 205

we use defunctionalization [82, 9, 91], which is a method for transforming
higher-order into first-order code. In the resulting programs, we explicitly
distinguish between data (i.e., values) and code (i.e., computations). In ad-
dition, our implementation also preserves the distinction between pure and
effectful code that is already present in the source program because this in-
formation is useful for analyzing and optimizing programs.

Values and Computations. The main operation on a function of type
A → B is to apply it to a value of type A to compute a result of type B. The
main operation for a monadic value of type IO A is to execute it, perform-
ing the necessary effects, to get a result of type A. We can describe these
operations as first-order functions:

app :: (A → B, A) −→ B

run :: IO A −→I A

Notice that in the types we have two different arrows: the short arrow is
for the type of values that represent functions, while the long arrow is for
computations. We also annotate the types of computations that perform
effects with a label describing the effects [87]. It is interesting to note the
difference between the types A −→I B, and A −→ IO B. The former describes
a computation that, given an A value, will produce a B value and, in the
process may perform the effect I. The latter type describes computations
that, given a value of type A, produce a value of type IO B, and do not
perform any effects in the process (later, we may use run on the resulting
value to perform the effects that it encapsulates).

Implementation of Computation Values. The implementation of a
computation value consists of three parts: (i) a concrete representation for
the value that is used, for example, when we store the value in a data struc-
ture; (ii) a first-order function that describes the behavior of the value when
we execute it; (iii) a definition for app or run that relates the representa-
tion of a value to its behavior. For example, consider the monadic value
getChar :: IO Char. When executed, this computations reads a character
from the standard input and returns it as its result. To represent values of
type IO Char, we use an algebraic datatype which has one constructor for
each distinct value of that type:

data IO Char = GetChar

| ... constructors for other values ...

206 CHAPTER 12. IMPLEMENTATION

Note that in this declaration, IO Char is the name of an atomic type which
happens to contain a space, and not a type constructor applied to an argu-
ment. Later in this section we shall come back to this point in the context
of generalized algebraic datatypes.

The second component of the implementation of getChar is an effectful
piece of code, primGetChar, that reads a character from standard input. Fi-
nally, we need an equation in the definition of run that relates the constructor
GetChar to the computation primGetChar:

-- (i) value

getChar :: IO Char

getChar = GetChar

-- (ii) behavior

primGetChar :: () −→I Char

primGetChar = ... read from stdin ...

-- (iii) Value related to behavior

run :: IO Char −→I Char

run GetChar = primGetChar ()

run ... = ...

Representing computation values as the constructors of a datatype is
quite convenient because it allows us to reuse the tools that we have for
working with datatypes in this new setting. Of course, other representations
are possible [78], but we aways have the same three basic components.

Free Variables. Because we work in a language with static scoping, com-
putation values may have to store parts of the context in which they were
created so that these values can be used when the computation is exe-
cuted. Representing computation values with algebraic datatypes supports
this quite naturally because we may store the context in the fields of the
constructor representing the value. Consider, for example, the function
putChar :: Char → IO () which is used to write a character to standard
output. This function is more complex than getChar because it involves two
computation values. The first is the function putChar, and the the second
is the monadic computation that is returned when we apply putChar to an
argument. Because these values have different types, they belong to different
representation types:

12.2. COMPUTATION VALUES 207

data Char → IO () = PutChar

| ...

data IO () = PutChar_1 Char

| ...

The constructor PutChar_1 represents the value that we get when we apply
putChar to one argument. Then putChar has the following implementation:

-- (i) value

putChar :: Char → IO ()

putChar = PutChar

-- (ii) behavior of putChar

funPutChar :: Char −→ IO ()

funPutChar x = PutChar_1 x -- stores free variable

-- (ii) behavior of the result of putChar

primPutChar :: Char −→I ()

primPutChar x = ... write character to stdout ...

-- (iii) Relate values to behaviors

app :: (Chat → IO (), Char) −→ IO ()

app (PutChar,x) = funPutChar x

app ... = ...

run :: IO () −→I ()

run (PutChar_1 x) = primPutChar x

run ... = ...

Other IO Primitives. We have already seen the definitions for two IO

primitives, getChar and putChar. Other basic operations of the monad are
added in a similar fashion. The result is that the different IO values corre-
spond to the abstract syntax of an effectful language, and the run function
defines an interpreter for this language. Sequencing of operations is done
with the monadic operation bindIO, which is defined like this:

bindIO :: IO a → (a → IO b) → IO b

bindIO = BindIO

208 CHAPTER 12. IMPLEMENTATION

primBindIO :: (IO a, a → IO b) −→I b

primBindIO (m,f) = do x ← run m

run (app(f,x))

app (BindIO, m) = BindIO_1 m

app (BindIO_1 m,f) = BindIO_2 m f

run (BindIO_2 m f) = primBindIO (m,f)

In the definition of primBindIO we use a do construct which sequences com-
putations. It is quite similar to sequencing statements in C. Notice that this
construct is different from the do construct of the source language, which is
simply syntactic sugar for bindIO.

Defunctionalization Algorithm. The algorithm has two parts. First we
perform lambda lifting [47] to move locally defined computation values to the
top level of a program. The lambda-lifted computations may acquire extra
arguments, corresponding to their free variables, and the algorithm adjusts
uses of these local variables to pass the free variables explicitly.

The second part of the algorithm makes the manipulation of computa-
tion values explicit. As we saw in the previous examples, for every function
definition we need to generate three components:

• First, we add a new constructor to the appropriate representation
datatype. Then, we replace the function definition with a new definition
that uses the constructor to create a representation for the function.

• Second, we define a behavior function. Its definition is obtained by
inserting explicit calls to app in the original function definition. For
example, if the function definition contains an expression of the form
f x, then we replace this expression with app(f,x). This is necessary
because, after we transform the program, f will be the representation
of a function value and so we need to use app when we want to execute
the computation capturing its behavior.

• Third, we generate a new equation for app that relates the new con-
structor and the new behavior.

As in Haskell, the entry point to the program is an IO () action called
main. Of course, main is simply a value; to execute the program, we need to
run main, which we do by adding a new entry point:

12.2. COMPUTATION VALUES 209

entry :: () −→I ()

entry = run main

Inlining. After defunctionalization, we have a first-order program that can
be compiled using fairly standard technology. Unfortunately, the programs
that we obtain from the algorithm we showed are rather inefficient because
they contain large amounts of interpretive overhead. For example, we call
all functions using the application operator, which examines the function
value and takes an appropriate action. The same happens with monadic
values and the run interpreter. Fortunately, we can obtain efficient programs
by performing aggressive inlining: our goal is to eliminate calls to app and
run when the function or monadic value is known statically. This eliminates
unnecessary interpretive overhead by evaluating the program at compile-time,
and only switching to the interpreter for unknown values. We note that the
degree to which the static evaluation succeeds is affected by the quality of
the lambda-lifter: noticing that something is a global value and hence that
it does not need to be passed as a free variable, generally results in better
programs [47]. Here is an example that illustrates how inlining eliminates
interpretive overhead:

main = bindIO getChar putChar

run (app (app(bindIO,getChar),putChar))

=

run (app (BindIO_1 getChar,putChar))

=

run (BindIO_2 getChar putChar)

=

do x ← run getChar

run (app(putChar,x))

=

do x ← primGetChar

run (app(putChar,x))

=

do x ← primGetChar

run (PutChar_1 x)

=

do x ← primGetChar

primPutChar x

210 CHAPTER 12. IMPLEMENTATION

Optimizing Monadic Values. As the previous example illustrates, inlin-
ing works well in a number of cases. We can eliminate even more interpretive
overhead, however, if we distribute run operations across the different con-
structs of the language. For example, inlining does not help for expressions
like the following:

run (case x of

’a’ → e1

_ → e2)

This computation will evaluate the argument to run, to get a computation
value, and then use the interpreter to execute the value. We get better code
if we ‘lift’ the case on expressions to a case in the statement language like
this:

run (case x of

’a’ → e1

_ → e2)

=

case x of

’a’ → run e1

_ → run e2

A similar situation occurs when we try to run the result of a pure function
(e.g, run (f x)). We can avoid the call to run by generating an effectful
version of f, which is obtained by wrapping run around the definition of f.
Thus, functions that return IO computation have two behaviors, one pure
and one effectful:

f :: A → IO B -- a value

funF :: A −→ IO B -- pure behavior

procF :: A −→I B -- effectful behavior

run (funF x) = procF x -- property of procF

Now we can replace run (funF x) with procF x to eliminate interpreting the
results of functions. Note that we do not need to do this for computation
values because inlining automatically generates the effectful code. However,
if a value results in a large computation, and if it is used many times, then
this could make the code that we generate large. We could avoid this by
generating an effectful behavior (with no arguments) for such computations,
and then calling it where the value is used.

12.2. COMPUTATION VALUES 211

Optimizing Function Values. Note that, while we mainly discussed the
liftings for the run operator, similar optimizations can be used for functions
that return functions as their results. Consider, for example, a function like
this:

f x = case x of

’a’ → e1

_ → e2

Here e1 and e2 are function values. Now, if we encounter an expression
app(f x,y), then we would have to interpret the result of the application.
We would get better code if we generated a specialized version of f by η-
expanding:

f2 (x,y) = case x of

’a’ → app (e1,y)

_ → app (e2,y)

Now we can replace app(f x, y) with f2 (x,y). In fact, it may be tempting
to rewrite the definition of f just to create a closure, and then add a new
equation to app that uses f2 when this closure is applied to an argument. This
would eliminate the code duplication that arises when we have two functions.
Unfortunately, this is only safe, if we know that e1 and e2 are guaranteed to
terminate, otherwise this transformation could turn diverging programs into
terminating ones. For example, if e1 diverges, then f ’a’ diverges. However,
if we changed the definition of f, then f ’a’ would simply create a closure,
and so terminate immediately. This is an unfortunate consequence of the
presence of non-termination in the language. In fact, for the same reason,
we can only remove dead code that we know will terminate, as this could
also make programs more terminating. While such transformations change
the meanings of some programs, it is not clear if this change is important
in practice: the visible effect would be that, in rare cases, a program that
does not work when not-optimized, will start working when optimized. Still,
an implementation could enable or disable such ‘unsafe’ optimizations with
a switch.

Types. In our implementation, we have a completely monomorphic pro-
gram by the time we perform defunctionalization. This enables us to have
different representations for different values, and to avoid having to box and

212 CHAPTER 12. IMPLEMENTATION

unbox values when working with polymorphic functions. For this reason,
we have a number of different run and app operators, one for each different
monadic or function type (in the previous examples we used the same name
to avoid cluttering the definitions with complicated names). Alternatively,
we could use a single type to represent all computation values, and then we
would only need one app and run function. This is easy to do in an untyped
intermediate language, however, if we want a typed intermediate language,
then we need a slightly more advanced type system. For example, we could
use generalized abstract datatypes (GADTs) [92, 80] to represent function
types. Here is an example using the notation used by the GHC compiler (as
of 2006):

data FunVal a b where

Id :: FunVal a a

PutChar :: FunVal Char (IOVal ())

data IOVal a where

GetChar :: IOVal Char

PutChar_1 :: Char → IOVal ()

app :: (FunVal a b, a) → b

app (Id, x) = x

app (PutChar, x) = PutChar_1 x

run :: IOVal a → IO a

run GetChar = getChar

run (PutChar_1 x) = putChar x

GADTs differ from ordinary abstract datatypes in that they allow construc-
tors to produce values, whose types are instances of the general type for the
datatype. This is useful because when we pattern match on such values, we
can assume the more concrete types in the relevant alternative. For example,
the type of Id states that the argument and result of the function have the
same type, which is why, in the definition of app, we can view x as having
both type a and b. Once we know about GADTs, implementing polymorphic
defunctionalization becomes fairly easy because we are essentially generating
a well-typed interpreter for the language, which is one of the classic applica-
tions for using GADTs.

12.3. REPRESENTATIONS FOR BITDATA 213

12.3 Representations for Bitdata

In this section we discuss various unboxed representations for bitdata and
how they affect the operations on bitdata. The representation that we are
discussing here is the internal representation used by an implementation,
which may differ from the fixed representation which is used when bitdata
is stored in memory areas. In particular, the internal representation has
to support bitdata values that have sizes that are not multiples of 8. The
internal representation is used when bitdata is used as an ordinary value (e.g.,
function arguments and results, or values in closures or datatype values).

The main issues arise with bitdata whose size does not match the size of
the registers of the machine. Our discussion will be focused on the represen-
tation of bitdata that is smaller than the registers of the machine (e.g., how
to represent a 20-bit quantity in a 32-bit register). For the purposes of this
discussion we shall assume that all bitdata values are internally represented
using the same number of bits, W (e.g., 32 on a 32-bit machine). This is
not necessary in general: for example, we could choose to represent an n bit
value with the smallest number of bytes that can contain the n bits. This
extra generality does not affect the issues that we discuss, which is why we
stick to a single size.

When we choose how to represent an n-bit value in W bits we face at
least two choices: (i) we have to decide where in the W bits to place the
n meaningful bits; (ii) we have to decide what to do with the remaining
bits of W . In addition, we have to decide if all bitdata values use the same
representation, or if it is useful to choose different representations depending
on the type. Two reasonable places for the n meaningful bits are either
the least or the most significant bits of W . For the remaining bits, we
could choose a normalized representation, where the unused bits all have a
fixed value (e.g., 0), or a representation where the unused bits may contain
arbitrary values. The benefit of using a normalized representation is that it
provides a unique representation for an n bit quantity, and the drawback is
that, in some operations, we may have to perform extra work to maintain
the invariant.

We may convert between values that use the different encodings. To
change from normalized to unnormalized representation we do not need to
do anything, because the normalized representation is a special case of the
unnormalized. For the opposite conversion, we need to mask-out any bits that
are not meaningful. To change from most- to least-significant representation

214 CHAPTER 12. IMPLEMENTATION

we need to shift right by W − n, while the opposite transformation is done
with a shift to the left. Notice that, because shifting fills the new positions
with 0, the result is always normalized.

The operations that we perform on bitdata include: arithmetic opera-
tions, logic operations, comparisons, accessing and updating bit-fields, con-
versions to and from bit-vectors, and storing and retrieving values in memory
areas. Notice that, because pointers and references are also a form of bit-
data, we have to consider the operations for dereferencing as well. For some
operations (e.g., and, or, xor), we can reuse the operations on values of width
W directly, independent of the actual representation we choose. For other
operations we may have to normalize some of the arguments or the result.
For example, the binary complement of a normalized value is not normalized,
because the meaningless bits become 1, instead of 0. If we choose to use a nor-
malized representation, then we would have to apply a conversion (i.e., mask)
to get a valid result. Other situations where we would have to normalize
the result include operations that may overflow (if we use a least-significant
representation) or underflow (if we use a most-significant representation). If,
alternatively, we chose to work with an unnormalized representation, then for
some operations (e.g., comparisons) we would have to convert the arguments
to a normalized form. There are cases where we may have to change from
most- to least-significant representation. This happens, for example, in the
definition of multiplication when using the most-significant encoding. In this
encoding, the value x is represented as x ∗ 2W−n . The following expression
gives us the formula for multiplying two values in this encoding:

(x ∗ y) ∗ 2W−n = (x ∗ 2W−n) ∗ y

Notice that one of the values has to be changed into the least-significant en-
coding before we perform the multiplication. To access a bit-field we shift ei-
ther left (if we use the most-significant encoding) or right (for least-significant
encoding). If, in addition, we are using a normalized representation, then we
would have to also mask to clear the bits that are not part of the field. If
the bitdata and bit-vectors use the same representation, then the conversion
functions do not need to do anything. Otherwise, they would have to use the
function that changes the representation appropriately.

As far as bit-twiddling is concerned, there isn’t a big difference between
using the most- or least-significant encoding for ordinary bitdata. However,
references and pointers are naturally represented using the most-significant

12.3. REPRESENTATIONS FOR BITDATA 215

normalized encoding because this exactly coincides with the address that
they represent. It may therefore be tempting to represent all bitdata using
this encoding. Unfortunately, this has a negative effect on the operations that
manipulate stored bitdata because, when we read data from an address, the
result is in least-significant encoding. Consider, for example, dereferencing
a pointer to a byte: after we read the byte from memory into a register, we
would have to shift the value to the left, so that we turn it into the most-
significant normalized representation. If, on the other hand, we decided to
represent all bitdata using a least-significant encoding, then we would have
to shift aligned references to the left before dereferencing them.

The problem is that references and pointers are naturally represented with
the most-significant (normalized) encoding while, for other bitdata, it is more
suitable to use the least-significant encoding. This mixed representation is
attractive because it eliminates the spurious shifts that occur when use the
same encoding for all values: the encoding of references is their address, so
we don’t need adjustments before dereferencing them; when we read data
from memory areas we do not need to adjust the value because bitdata uses
the least-significant encoding. The only exception would be pointers that
are stored in memory. However, recall (Chapter 9, Section 9.4) that the
representation of a pointer in memory is simply its address (or 0 for null
pointers) so again we do not need any adjustments.

The mixed representation has no effect on the arithmetic and logical op-
erations because they manipulate values of the same type. However, we need
to adjust the operations that manipulate bit-fields, and also the operations
that compute the bit-vector representations for pointers and references. Be-
cause all operations are overloaded, it is easy to perform such type-dependent
manipulations.

When using the least-significant (unnormalized) encoding to access a bit-
field we simply shift to the right. Here is an example to make this concrete:

bidata PCI = PCI { bus :: Bit 8, dev :: Bit 5, fun :: Bit 3 }

getDev :: PCI → Bit 5

getDev (PCI { dev = x }) = x

-- implementation

getDev pci = pci >> 3

However, when we generate the accessor (and update) functions for bit-fields

216 CHAPTER 12. IMPLEMENTATION

that contain references, we also have to shift to the left, so that the resulting
value uses the most-significant normalized representation:

bitdata MyRef = MyRef { ref :: ARef 4 T, bits :: Bit 2 }

getRef :: MyRef → ARef 4 T

getRef (MyRef { ref = x }) = x

-- implementation

getRef ref = (ref >> 2) << 2

Notice that shifting right and then left exactly ensures that we clear the bits
in the reference that have to be 0 (due to the alignment constraint). A peep-
hole optimizer could replace such pairs of shifts with a mask, if that is more
efficient on a particular architecture.

The other change that we need to make is in the implementation of to
toBits for references and pointers, which becomes a shift to the right, chang-
ing back to the least-significant representation.

12.4 Run Time System

Our implementation uses a fairly standard run-time system that supports
garbage collection and efficient tail calls. There are two memory regions
used by the run-time system: the stack and the heap. The stack is a mixture
of a data and control stacks: it is used to store function arguments, local
variables, and return addresses for function calls. The heap stores dynam-
ically allocated objects, such as the representations for algebraic datatypes
and closures.

12.4.1 Calling Convention

To implement function calls we use the convention that the caller allocates
the arguments of a function and the callee deallocates them. Our calling
convention is similar to the ‘standard’ calling convention (e.g., as used in
Pascal) with the difference that the return address of a function is pushed on
the run-time stack before the arguments to the function. The main benefit of
this calling convention is that it naturally supports arbitrary tail-calls, which
are very common in programs written in functional languages.

12.4. RUN TIME SYSTEM 217

Another common calling convention is for the caller to both allocate and
deallocate the arguments of a function (e.g., as done in many C compilers).
This calling convention does not support tail-calls of functions whose argu-
ments require more space than is occupied by the arguments of the calling
function because, upon return, not all arguments will be deallocated. Con-
sider, for example, the following C functions:

void f(int x,int y) { ... }

void g(int x) { f(x,x); }

void h(int x) { g(x); }

The definition of h contains a call to g that is in a tail position. In this case,
we can perform a tail-call simply by jumping to the code for g. When the
function g finishes its work, it will return directly to the caller of h which
will deallocate the argument x. Now consider the definition of g, which also
contains a function call (to f) in a tail-position. In this case, we cannot
perform a tail-call because after f is finished it needs to return to g so that
the second argument can be deallocated.

12.4.2 Stack Frames

The run-time stack of our programs is split into a number of stack frames.
Each stack frame contains the state of a function that is currently active (i.e.,
is in the process of computing a result). The order of the stack frames on the
stack depends on the order in which functions call each other at run-time.
Our stack grows ‘down’ (towards lower addresses), so, if a function f calls a
function g, then the stack frame for g would be at lower addresses then the
stack frame for f. This, together with the layout of stack frames is illustrated
in Figure 12.1. The layout of stack frames is fairly standard, except for the
location of the return address for the function: in our stack frames it comes
before (at a higher address) the other arguments. It is more common to push
the return address after the arguments, just before jumping to the code for
the called function (so much so that there is special instruction for this on the
IA32) . One of the reasons we deviate from the status quo, is that our frame
layout is more natural for tail calls: because the return address is essentially
the first argument to all functions, when we perform a tail call we do not
need to adjust the location of the return address. If we placed the return
address after the arguments, then we would have to move the return address
to its new location when we tail-call a function with a different number of

218 CHAPTER 12. IMPLEMENTATION

Figure 12.1: The stack, and the layout of a stack frame.

arguments. The code that we generate for a typical call to a function F is as
follows:1

push $1f

push arg_1

...

push arg_n

jmp F

1:

The code for tail calls differs in that we overwrite the caller’s stack frame,
rather than pushing a new frame on the stack. While over-writing the current
stack frame, we have to be careful to avoid prematurely overwriting data that
we need. We implemented this with a dependency analysis between stack
locations, and using an auxiliary register to break dependency cycles. When
we return from a function, we deallocate its stack frame by adding the size
of the frame to the stack pointer and then using the ret instruction to pop
the return address from the stack, and jump to it:

add $frame_size, %esp

ret

1In the next section, we shall discuss a small change to this code

12.4. RUN TIME SYSTEM 219

12.4.3 Traversing the Stack

To perform garbage collection we need to identify the ‘root set’ of live point-
ers into the heap. Pointers to the heap that reside on the stack belong to
functions that are still active, and so they refer to potentially live data. Un-
fortunately, not all values on the stack are pointers, so we need to do some
work to distinguish pointers to the heap from other values.

At compiler time, we know the layouts of all possible frames that may
reside on the stack because each function can keep track of the types of
its variables. However, we do not know until run-time in what order these
frames will appear on the stack when a garbage collection occurs because
this depends on the execution path of the program. Thus, if the garbage
collector is to find the pointers on the stack, we need to arrange for some
way to recognize the frames on the run-time stack.

A simple way to recognize frames at run-time would be to add a special
‘tag’ field to each frame. This essentially amounts to passing an extra argu-
ment to all functions, which results in a fairly expensive solution. We can
get a better solution by noticing that we can use the return address, to iden-
tify the previous frame on the stack. This works, because the return address
uniquely identifies the place in the program from which the current function
was called.

All we are missing now is a means to associate return addresses with the
information about their corresponding frames. A simple solution might be
to use a hash-table or another similar data structure, but this gives us a
fairly expensive solution. To get a more lightweight solution, we use a trick
that exploits the slightly non-standard way that we use to generate code for
function calls. More specifically, we modify the code that is generated for a
function call to embed the information about the frame directly in the code,
after the jump to the callee, and before the address where we continue to
execute after the callee returns.

push $1f

push arg_1

...

push arg_n

jmp F

.long frame-info

1:

With this convention, we can easily access the information about the frame

220 CHAPTER 12. IMPLEMENTATION

Figure 12.2: Walking the stack. Function A called function B. The figure
illustrates how B can find the code to process the frame for A.

of our caller, simply by looking at the address in memory before the return
address of the function.

In our implementation, we generate specialized pieces of code to garbage-
collect (scavenge) each shape of frame or heap object. So the frame-info in
the previous example is a pointer to the code that scavenges the appropriate
frame (see Figure 12.2). Having set up things appropriately, the code that
scavenges the stack during garbage collection becomes fairly simple, and it
may be written like this in C:

void walk_stack(DWord* frame, ScavFun scav) {

do {

DWord* ret;

frame = scav(frame);

ret = (DWord*)(*frame);

scav = (ScavFun)ret[-1];

--frame;

} while (scav != 0);

scav_globals();

}

The function walk_stack uses two arguments: frame, which is a pointer to

12.5. SUMMARY 221

the end (smallest address) of the current frame, and scav which is a function
to scavenge this frame. The scavenging functions expect a pointer to the end
of a frame and return a pointer to the beginning of the frame as a result. To
terminate the process, we arrange that the location before the return address
of the main function contains 0.

Given these details, the rest of the garbage collector follows the standard
structure of a copying collector [2].

12.5 Summary

In this section we presented some of the details of the implementation of the
back-end for our prototype compiler. Our implementation preserves types
throughout the compilation process and uses this information to pick the
most suitable representation for each value.

We generate specialized versions for polymorphic functions and in this
way we convert polymorphic to monomorphic programs. We use defunc-
tionalization to provide explicit representations for computation values. It
is important to perform aggressive inlining to avoid excessive interpretive
overhead due to computation values.

To implement function calls we used a calling convention that supports
efficient tail-calls. In addition, our calling convention makes it easy to add
extra information about stack frames, which is useful for the implementation
of the garbage collection algorithm.

222 CHAPTER 12. IMPLEMENTATION

Chapter 13

Conclusions and Future Work

In this final chapter, we summarize the key contributions of our dissertation
(Section 13.1), and present some ideas for future work (Section 13.2).

13.1 Summary of Contributions

The main contribution of this dissertation is that it shows how to extend a
modern functional language with support for manipulating data with rigid
representation constraints. We identified two kinds of such data: bitdata,
which is data that is represented using fixed-width bit-patterns, and mem-
ory areas, which is data that has a fixed layout in memory. The motivation
for working with such data stems from our desire to write system-level soft-
ware in a high-level functional language. The following list describes our key
contributions in more detail:

• We showed how to formalize a system for natural numbers at the type
level by using qualified types and improvement (Chapter 4). Our design
uses this feature to keep track of various invariants about data, such
as the size of bit-vectors, the alignment of references, and the sizes of
arrays.

• We presented a simple, yet novel way of working with predicates with
functional dependencies (Chapter 5). It enables us to treat such predi-
cates as type functions, which improves the readability of the types in
our programs. This idea is general and can be used in any program
that uses functional predicates.

223

224 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

• We described a calculus that can be used to understand and analyze the
various definitional constructs of modern functional languages (Chap-
ter 6). We used this notation to define and discuss the various pattern
matching constructs introduced in our design.

• We described a new declaration that allows programmers to define
types whose values have programmer-defined bit-pattern representa-
tions (Chapter 7). Our design provides a high-level, type-safe approach
for manipulating low-level data, that enables programmers to work with
bitdata as if it was ordinary algebraic data.

• We developed algorithms that can analyze programs to detect bitdata
that fails to satisfy important algebraic properties—the lack of junk
and confusion in the representation (Chapter 8). Working with such
bitdata requires caution but we showed that we can extend the exhaus-
tiveness/reachability analysis for function definitions to also support
such unusual bitdata.

• We designed a system of types that can be used to give a precise descrip-
tion of the layout of memory areas (Chapters 9 and 10). Our design
provides a safe interface for manipulating memory areas by utilizing
the type system to enforce a number of invariants at compile time.
In addition, our design supports the manipulation of aligned data by
computing and propagating alignment information for references.

• We implemented a compiler for a strict, pure, functional language ex-
tended with support for bitdata and memory areas (some details are
presented in Chapter 12). This implementation demonstrates the fea-
sibility of our design, and also, it enabled us to experiment with the
design in a working system, which gives us confidence that our design
can be used for developing practical systems software. We tried our
design on a number of examples, including the implementation of the
boot code for an operating-system kernel.

13.2 Future Work

In this section, we outline a number of ideas for future work that we have
considered but not yet implemented or fully explored.

13.2. FUTURE WORK 225

13.2.1 Parameterized Bitdata

In Chapter 7, we presented bitdata declarations that can be used to define
new types with explicit bit-vector representations. One limitation of these
declarations is that, unlike ordinary data declarations, they do not support
type parameters. While the monomorphic form is sufficient in many sit-
uations, occasionally it is useful to parameterize a bitdata type by another
type. To see how parameterized bitdata might be used, consider the following
example:

bitdata Pair a b = Two { x :: a, y :: b }

This type describes bitdata types that are represented by concatenating any
two other types (i.e., it is similar to the operator (#) for bit-vectors). For
example, the type Pair (Bit 16) (Bit 16) is represented with 32 bits, while
the type Pair (Bit 5) (Bit 3) is represented with 8 bits. In the following
paragraphs, we illustrate the different types and operations that we have to
introduce because of this declaration.

Recall that, for each constructor of a bitdata declaration, we introduce
a new ‘product’ type describing the values created with that constructor.
When we have a parameterized bitdata type, we also have to parametrize the
product types for any constructors that mention one or more of the param-
eters. For example, because the constructor Two uses both type parameters,
its corresponding product type would have the following kind:

Two’ :: * → * → *

Types that are introduced by a bitdata declaration should belong to the
BitRep class to indicate that they have well-formed bit-vector representations.
When we work with parameterized bitdata these instances are polymorphic:

instance (BitRep a + BitRep b = n, Width n) ⇒ BitRep (Pair a b) n

instance (BitRep a + BitRep b = n, Width n) ⇒ BitRep (Two’ a b) n

The assumptions on the instances assert two things: (i) each of the fields in a
constructor have valid bit-vector representations, and (ii) the representation
of the values in the type are not too wide. In general, the constraints in the
instance for a bitdata type are computed by combining the constraints from
the instances of the product types of its constructors.

226 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

For each bitdata declaration, we introduce a number of functions that
manipulate the values. For parameterized bitdata, these functions are poly-
morphic. For example, the constructor and the accessor and update functions
for Pair have the following types:

Two :: Two’ a b → Pair a b

get’Two’x :: (BitRep a m, BitRep b n) ⇒ Two’ a b → a

get’Two’y :: (BitRep a m, BitRep b n) ⇒ Two’ a b → b

set’Two’x :: (BitRep a m, BitRep b n) ⇒ a → Two’ a b → Two’ a b

set’Two’y :: (BitRep a m, BitRep b n) ⇒ a → Two’ a b → Two’ a b

The contexts on the types of the get and set functions restrict them to
types that have bit representations. From an operational point of view, the
context specifies how to access (or update) the relevant field. The type of
the constructor does not need a context because this function is simply an
embedding and so we do not need any extra information. When we use the
constructor to create Pair values directly, we still need to check that the
types of the values belong to the BitRep class:

mkTwo :: (BitRep a m, BitRep b n) ⇒ a → b → Pair a b

mkTwo e1 e2 = Two { x = e1, y = e2 }

It is also possible to give the set functions more general types that allow
them to change the type of a field. If we do this, then we should add extra
constraints that ensure that the resulting value is not too wide (i.e., we can
still discharge the Width predicate for its width).

The key technical difficulty in adding type parameters to bitdata decla-
rations is adjusting the junk and confusion-analysis to work in the presence
of type parameters. This is important because we use the confusion analysis
to determine if a field needs to be a member of the BitData class, or if mem-
bership in BitRep is sufficient. To see the difficulty, consider the following
example:

bitdata T a b = C1 { x :: a, y :: b } as x # B0 # y

| C2 { x :: a, y :: b } as y # B1 # x

The type T has two constructors C1 and C2. The two constructors differ in
that C1 places the field x in the most significant part of the representation,
while C2 places x in the least significant part. We cannot accurately determine

13.2. FUTURE WORK 227

if the values constructed with the two types overlap because we do not know
the widths of the fields x and y. More precisely, if they are of the same width,
then the two constructors do not overlap because the tag bit will distinguish
them, but otherwise they will overlap.

We can avoid this problem by being conservative in our analysis: if an
implementation cannot determine for certain that two constructors do not
overlap, then it may assume that they do, thus requiring BitData instances
for all of their fields. This is likely to work well in practice because examples
like T are contrived, and it is much more likely that the tag bits in the bitdata
type are in a fixed location so that the analysis can tell if the constructors
overlap or not.

13.2.2 Computed Bitfields

In our current design, the fields of a bitdata declaration are always repre-
sented by a contiguous sequence of bits. Some more exotic encodings, how-
ever, may require that a single conceptual value is constructed out of several
non-adjacent components (we saw an example of this in the description of
segment descriptors in Chapter 11). Another instance of the same problem is
when the conceptual value for a field differs from its concrete representation.
For example, if we want to work with quantities measured in bytes but, in
the actual representation they are stored in units of words.

Using our current design, programmers would have to write functions
that assemble the non-adjacent components into a single value or perform
any necessary conversions on the fields. This may not be a big problem in
practice because, in our experience, such bitdata types are not very common.
Another possibility, however, would be to extend the bitdata declarations
to support such bitdata directly.

The basic idea is to allow the values for fields to be computed from the as
clause, so long as this computation is reversible to an extent. This require-
ment is necessary because we want to use the constructors both to construct
and pattern match on values. To illustrate how this might work, consider
the following example (the notation that we use conflicts with the notation
for default values on the fields but that is not important here).

bitdata T = C { size = s # B00 :: Bit 8,

opts :: Bit 2

} as s # opts

228 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Values of type T have two fields: an 8-bit field called size, and a 2-bit field
called opts. Ordinarily, such values would require 10 bits to represent but,
in this case, we use only 8 bits because the field size has the additional
constraint that its last two bits are always B00 and so we do not need to
store them. This constraint may arise because we would like to work with
sizes measured in bytes but, for this type, the size should be a whole number
of words.

The main difference from our original design is that each conceptual field
has an annotation that specifies how to compute its value from the repre-
sentation specified in the as clause. If this specification is omitted, then
it is assumed to be just the name of the field. For example, the following
definition of T is equivalent to the previous one:

bitdata T = C { size = s # B00 :: Bit 8,

opts = opts :: Bit 2

} as s # opts

The annotations on fields are used when we pattern match on a value, or
when we use accessors for fields to extract their values. For example, at the
bit level, the get operations for the type C’ behave like this:

get’C’size :: Bit 8 → Bit 8

get’C’size (s # opts) = s # B00

get’C’opts :: Bit 8 → Bit 2

get’C’opts (s # opts) = opts

Note that the patterns correspond to the as clause and the results correspond
to the annotations on the fields.

When programmers specify the value for a field (e.g., when they use a
constructor or an update function), they use the computed value. Therefore,
we need to invert the computation specified for the field to determine the
concrete representation that we should use. The main design work that is
required to complete this extension is to determine what expressions should
be allowed in the computation for a field so that we can determine a sensible
inversion function. One option would be to use patterns as specifications of
how to compute fields. Then we could define the update and the constructor
functions like this:

set’C’size :: Bit 8 → Bit 8 → Bit 8

set’C’size (s # B00) (_ # opts) = s # opts

13.2. FUTURE WORK 229

set’C’opts :: Bit 2 → Bit 8 → Bit 8

set’C’opts opts (s # _) = s # opts

mkC :: Bit 8 → Bit 2 → Bit 8

mkC (s # B00) opts = s # opts

Note that the results of the functions correspond to the as clause, and that
we use the field annotations to examine fields. If we choose this approach,
then the constructor and update functions may be partial, as is the case for
set’C’size and mkC. These functions will fail if we try to construct a value
by using invalid values for the fields (e.g., in this case, a value for the size

field that does not end in B00).
To avoid partiality in constructors, we consider two alternative designs.

One option is to restrict the patterns that can be used as field computations
to allow only irrefutable patterns. This limits the computations that we can
do when accessing fields, but it ensures that the constructors and update
functions will not fail due to invalid values. Irrefutable patterns are sufficient
for working with non-contiguous fields but we cannot use them to define
examples like the bitdata type T.

Another option would be to allow arbitrary patterns in the fields defi-
nitions but to use an irrefutable version of the pattern when we construct
values. We can obtain an irrefutable version of a pattern by replacing sub-
patterns that may fail with wildcard patterns (for bitdata constructors this
amounts to ignoring the tag bits). Using this approach, the update and
constructor functions for T would be as follows:

set’C’size :: Bit 8 → Bit 8 → Bit 8

set’C’size (s # (_ :: Bit 2)) (_ # opts) = s # opts

set’C’opts :: Bit 2 → Bit 8 → Bit 8

set’C’opts opts (s # _) = s # opts

mkC :: Bit 8 → Bit 2 → Bit 8

mkC (s # (_ :: Bit 2)) opts = s # opts

The difference from the previous example is that we have replaced the pattern
B00 with its irrefutable version (_ :: Bit 2). The net effect of this design
choice is that constructors do not validate the values for their fields, which
is similar to what we did with if clauses (they are not evaluated when we

230 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

construct values, see Section 7.3.4 of Chapter 7). In this case, however, we
need to be more careful to avoid violating the properties enforced by the
types. Consider, for example, the following declaration:

bitdata Zero = Z as B0

This defines a bitdata type Zero that has only a single value represented as
B0. We can violate this property of Zero by using a strategy similar to the one
that we followed in Chapter 7 (Section 7.4) where we exploited the confusion
between constructors to convert values to incompatible types. In this case,
instead of using confusion between constructors, we can exploit the fact that
the constructors for computed fields do not validate their values.

bitdata Sum = A { x :: Zero } as B0 # x

| B { x :: Bit 1 } as B1 # x

bitdata Bad = Bad { f = A { x = bits } :: Sum } as bits

cast :: Bit 1 → Zero

cast b = case Bad { f = B { x = b } } of

Bad { f = A { x = z } } → z

First, we define the type Sum, which has two constructors, A and B, that have
fields of incompatible types. This is not a problem, however, because Sum

values are represented with 2 bits: one tag bit, and one bit for the value
of the field. Next, we define the type Bad, which has one computed field,
f, of type Sum. Bad values are represented with one bit, which should be
the representation of a Zero value. When we access the field f, we use the
constructor A to construct a value of type Sum. When we use the constructor
Bad, however, we are performing the operation in the opposite direction,
essentially turning Sum values into Zero values. This is where the problem
occurs: because the constructor does not check the tag on the Sum value, we
can violate the properties of the types, which is what we do in the function
cast. Had we used the checked semantics for constructors, then the function
cast would terminate with a run-time error when we try to construct the Bad

value that is scrutinized by the case expression.
In conclusion, if we choose the unchecked semantics for constructors, then

there is no guarantee that the parts of the representation defined by a possibly
failing pattern will satisfy the property suggested by their type (e.g., we have

13.2. FUTURE WORK 231

no guarantee that bits from the previous example is a valid value of type
Zero). Therefore, we should allow such representations only if their types
belong to the BitData class (i.e., if they have no special invariants). With this
requirement, the declaration Bad would be rejected because the constructor
A may fail, but the value bits is of type Zero, which does not belong to
BitData.

13.2.3 Views on Memory Areas

In Chapter 10, we described a number of functions that allow us to ‘cast’
between different views on arrays. For example, one of these functions is
toMatrix, which enables us to turn a one-dimensional array into a two-
dimensional one:

toMatrix :: Ref (Array (x*y) r) → Ref (Array x (Array y r))

A common property of all casting functions is that they do not perform
any computation but, instead, they change the ‘view’ on a memory area. In
other words, given a reference to an area, a casting function returns the exact
same reference but at a different type. Therefore, we may think of casting
functions as being derived from ‘functions’ on areas that simply ‘modify’ the
types of references. It is useful to capture this property of casting functions
in their types because then we could define casting functions in a modular
fashion (e.g., we can have casting functions that are parameterized by other
casting functions). To achieve this, we introduce a type constructor called
() which classifies ‘functions’ between compatible memory areas, and a
new kind called View:

() :: Area → Area → View

An expression of type A B is an assertion that it is safe to convert a refer-
ence to an A area into a reference to a B area. We shall call such expressions
views on memory areas, and we will use them in the casting operator:

Γ ⊢ v : r s
Γ ⊢ cast v : ARef a r → ARef a s

The casting operator is an identity function in disguise because the address
cast v r is the same as the address r. The purpose of the argument v is to
ensure that the cast is safe. Therefore, we have to be careful to provide only
operations that construct valid views.

232 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Basic Views. We can start with some simple examples:

idV : r r

v1 : r s v2 : s t

(v2 ◦ v1) : r t

The first rule introduces the identity view, idV , which does not change the
view on an area. The second rule introduces the operator (◦), which al-
lows us to compose views. These operations satisfy the usual identity and
associativity laws for composition:

idV ◦ f = f

g ◦ idV = f

f ◦ (g ◦ h) = (f ◦ g) ◦ h

Furthermore, the operation cast satisfies the functorial laws:

cast idV = id

cast (f ◦ g) = cast f . cast g

Of course, we would like to have some more interesting casts between
memory areas. For example, the casting operations from Chapter 10 fit
naturally in this framework:

splitArr : Array (x + y) r Pair (Array x r) (Array y r)

toMatrix : Array (x ∗ y) r Array x (Array y r)

In addition, we could provide the inverse views joinArr and fromMatrix and
also the byte-array functions fromBytes and toBytes .

Inverse Views. All of the views so far have an inverse, so instead of defin-
ing the views in isomorphism pairs, we might want to add a general inversion
operation:

v : s r
inv v : r s

13.2. FUTURE WORK 233

This allows us to define fromMatrix as inv toMatrix , for example. The
inversion operator satisfies the usual inversion laws:

inv idV = idV

inv (f ◦ g) = inv g ◦ inv f

The tradeoff of having a general inversion operator is that we restrict our-
selves to working only with views that do not lose information. To see what
we lose, suppose that we add a type constant Blank :: Area, which occupies
1 byte, but we do not provide any operations on references to such areas
(e.g., there are no instances for the ValIn and Bytes classes). Then, it would
make sense to have a view that ‘forgets’ the format of an area:

forget : t Array (SizeOf t) Blank

Clearly, it is not safe to invert the view forget , because then we would be
able to cast between arbitrary memory areas of the same size. For example,
we could define a view, bad, that allows us to turn arbitrary integers into
pointers:

bad :: Stored (Bit 32) Stored (Ptr a)

bad = inv forget ◦ forget

Area Constructors as Functors. So far, we have shown that the casting
operations from Chapter 10 fit into this framework. However, we can also
define new operations that we could not define before. For example, we can
define an operation called mapArr that exploits the functorial nature of the
type constructor Array :

v : r s
mapArr v : Array n r Array n s

This operation allows us to apply a cast to all the elements in an array. It
satisfies the functor laws:

mapArr idV = idV

mapArr (f ◦ g) = mapArr f ◦mapArr g

As an example of how we might use mapArr , consider the problem of con-
verting a 2-dimensional array into a 3-dimensional one. There are two ways

234 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

to achieve this because we can either split along the first or the second di-
mension. Here is how we can define the function that splits along the first
dimension:

split1 :: Ref (Array (x + y) (Array z r)) →
Ref (Array x (Array y (Array z r)))

split1 r = cast toMatrix r

We can define this function with the operations from Chapter 10 because
(cast toMatrix) is the same as the function that we previously called toMatrix.
We can define the function that splits along the second dimension like this:

split2 :: Ref (Array x (Array (y+z) r)) →
Ref (Array x (Array y (Array z r)))

split2 r = cast (mapArr toMatrix) r

The function split2 provides an example of something that we can do with
area views that we cannot do with the operations defined in Chapter 10.

13.2.4 Reference Fields

Our design uses types of kind Area to describe the layout of memory areas. To
identify memory areas we use references. For example, consider the following
declaration:

struct T where

fst :: Stored (Bit 16)

snd :: Stored (Bit 32)

Then a value of type Ref T is the start address of an area that has two
adjacent sub-areas described by the types of the fields.

The Idea. In our design, we chose to identify areas by their initial ad-
dress. It is possible to avoid this (somewhat arbitrary) choice by allowing
programmers to specify the address that identifies an area. One possibility is
to extend the syntax of struct declarations to allow programmers to specify
the reference field of a structure. Then, when we define a reference to the
entire structure, we would use the reference field to identify the structure,
instead of using the first field as in our original design. Here is an example:

13.2. FUTURE WORK 235

struct T1 where

fst :: Stored (Bit 16)

^

snd :: Stored (Bit 32)

The special field ^ is the reference field. In this case, it specifies that T1 areas
should be identified by the address between the two sub-areas. Note that the
field fst resides at a negative offset relative to the T1 reference, something
that cannot not happen in our original design. Figure 13.1 illustrates this
graphically. A structure may have at most one reference field. If there is
no specified reference field, then it is implicitly added before the first field,
which is compatible with our current design.

Figure 13.1: A reference to T1

New Functionality. Using this extension, we can specify some interesting
areas that we cannot express directly in our design. For example, consider
the following declaration:

area r :: ARef 4 T1

As before, the alignment constraint restricts the possible values for the ref-
erence r. However, now r refers to the the middle of the structure instead of
the beginning and so we know that the field snd will be aligned on a 4 byte
boundary instead of fst. To achieve this in our original design we have to
add some padding to the beginning of the structure to ensure that the second
field is properly aligned:

struct T1’ where

pad :: Stored (Bit 16)

fst :: Stored (Bit 16)

snd :: Stored (Bit 32)

area r’ :: ARef 4 T1’

236 CHAPTER 13. CONCLUSIONS AND FUTURE WORK

Offsets We have to account for reference fields when we compute references
to sub-areas. In our original design, computing a reference to a sub-field is
fairly easy: we simply calculate the offset of the field in the structure. In
the extended design, we have to adjust the computation to account for the
reference fields of both the entire structure and the sub-field. Consider the
following example:

struct Wrap r where

wrapped :: r

References to Wrap r areas point to the beginning of the area because we have
no explicit reference field. Note, however, that the selector function wrapped

will behave differently depending on how we instantiate r. For example, to
access the field of Wrap T1 we need to add 2 bytes (because of the reference
field), but to access the field of Wrap (LE (Bit 32)) we do not need to add
anything. Clearly, these different computations also affect the alignments
of the resulting references, so we need to adjust the type of the selectors to
account for this.

We can formalize all these computations by using the following type func-
tion:

class Offset (r :: Area) (n :: Nat) | r n

instance Offset (LE r) 0

instance Offset (BE r) 0

instance Offset (Array n r) 0

instance Offset T1 2

The predicate Offset r n asserts that the reference point for area r is n bytes
from the beginning of the structure. The fact that we use the beginning is
not important, but we do need a common reference point to perform the
computations. The instances specify that we reference stored values and
arrays by using the first address of the area (as in our original design). Non-
zero offsets arise from the use of reference fields in struct declarations. For
example, the offset for T1 is two because the reference field for T1 is after the
field fst which occupies two bytes:

instance Offset T1 2

Using the class Offset, we can define the type for the selector function
wrapped like this:

(.wrapped) :: ARef a (Wrap r) → ARef (GCD a (Offset r)) r

Operationally, the evidence for Offset r n could be the integer n so wrapped

simply needs to add the evidence to its argument. In general, the alignment
of the sub-field can be computed by the greatest common divisor of the
alignment of the reference and the distance between the reference to the
structure and the reference to the field. Here is another example, which
illustrates what happens when we access fields from structures that have a
reference field:

struct T3 r s t where

f1 :: r

f2 :: s

^

f3 :: t

(.f3) :: (Offset t o)

⇒ ARef a (T3 r s t) → ARef (GCD a o) t

(.f2) :: (SizeOf s - Offset s = o)

⇒ ARef a (T3 r s t) → ARef (GCD a o) s

(.f1) :: (SizeOf s + SizeOf r - Offset r)

⇒ ARef a (T3 r s t) → ARef (GCD a o) r

13.2.5 Implementation and Additional Evaluation

In the previous sections we presented some ideas for possible extensions and
generalizations of our design. However, before we proceed with such exten-
sions it would be useful to spend some more time experimenting and evaluat-
ing the design in its present form. In particular, it would be useful to develop
more systems software and compare our implementations with existing code
for safety, expressiveness, and performance. Before we can proceed with this,
we would need a fairly robust and efficient implementation of the language.
The prototype compiler that we developed for experimentation during the
course of this work is lacking a number of optimizations (e.g., no register al-
location and no inlining) which makes it difficult to use it in comparisons of
performance. An interesting area for future exploration would be to consider
optimizations of the bit-twiddling code resulting from bitdata declarations.

237

238

Bibliography

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams
Iv, D. P. Friedman, E. Kohlbecker, Jr. G. L. Steele, D. H. Bartley,
R. Halstead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M.
Pitman, and M. Wand. Revised Report on the Algorithmic Language
Scheme. Journal of Higher-Order and Symbolic Computation, 11(1):7–
105, August 1998.

[2] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1998.

[3] Joe Armstrong. Erlang—A Survey of the Language and Its Industrial
Applications. In Proceedings of the Ninth Symposium and Exhibition
on Industrial Applications of Prolog, pages 16–18, Hino, Tokyo, Japan,
October 1996.

[4] Lennart Augustsson. Cayenne–A Language With Dependent Types.
In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming, pages 239–250, Baltimore, MD, USA,
September 1998.

[5] Lennart Augustsson, Jacob Schwartz, and Rishiyur S. Nikhil. Bluespec
Language Definition. Sandburst Corporation, December 2002.

[6] Godmar Back. DataScript—A Specification and Scripting Language
for Binary Data. In Proceedings of the ACM Conference on Generative
Programming and Component Engineering, pages 66–77, Pittsburgh,
PA, USA, October 2002.

[7] Henk Barendregt. Introduction to Generalized Type Systems. Journal
of Functional Programming, 1(2):125–154, April 1991.

239

[8] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Elsevier, 1997.

[9] Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven
Defunctionalization. In Proceedings of the Second ACM SIGPLAN In-
ternational Conference on Functional Programming, pages 25–37, Am-
sterdam, Netherlands, June 1997.

[10] Bell Labs. The Creation of the UNIX* Operating System.
http://www.bell-labs.com/history/unix, date viewed: 25 April
2007.

[11] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun
Sirer, Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan
Eggers. Extensibility, Safety and Performance in the SPIN Operating
System. In Proceedings of the Fifteenth ACM Symposium on Operat-
ing Systems Principles, pages 267–284, Copper Mountain, CO, USA,
December 1995.

[12] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Springer-Verlag, 2004.

[13] Edoardo S. Biagioni. Sequence Types for Functional Languages. Tech-
nical Report CMU-CS-95-180, School of Computer Science, Carnegie
Mellon University, August 1995.

[14] Edoardo S. Biagioni, Robert Harper, and Peter Lee. A Network Pro-
tocol Stack in Standard ML. Journal of Higher-Order and Symbolic
Computation, 14(4):309–356, 2001.

[15] Matthias Blume. No-Longer-Foreign: Teaching an ML Compiler to
Speak C“Natively”. Electronic Notes in Theoretical Computer Science,
59(1):36–52, November 2001.

[16] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered
Binary-Decision Diagrams. ACM Computing Surveys, 24(3):293–318,
September 1992.

[17] C99 Committee. C99 Specification with TC1 and TC2, May 2005.
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf,
date viewed: 25 April 2007.

240

http://www.bell-labs.com/history/unix
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf

[18] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 Report (revised). Technical Re-
port SRC-RR-52, HP Labs, November 1989.

[19] Luca Cardelli and Peter Wegner. On Understanding Types, Data Ab-
straction, and Polymorphism. ACM Computing Surveys, 17(4):471–
522, December 1985.

[20] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated Type Synonyms. In Proceedings of the Tenth ACM SIG-
PLAN International Conference on Functional Programming, pages
241–253, Tallinn, Estonia, September 2005.

[21] Manuel M. T. Chakravarty and the Haskell FFI Team.
Haskell 98 Foreign Function Interface (1.0), 2003.
http://www.cse.unsw.edu.au/~chak/haskell/ffi, date viewed: 25
April 2007.

[22] Christopher L. Conway and Stephen A. Edwards. NDL: A Domain-
Specific Language for Device Drivers. In Proceedings of the ACM SIG-
PLAN/SIGBED 2004 Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 30–36, Washington, DC, USA, June 2004.

[23] Olivier Dubuisson. ASN.1—Communication Between Heterogeneous
Systems. Morgan Kaufmann Publishers, September 2000.

[24] Martin Erwig and Simon Petyon Jones. Pattern Guards and Transfor-
mational Patterns. Electronic Notes in Theoretical Computer Science,
41(1):12.1–12.27, August 2001.

[25] Andrzej Filinski. Controlling Effects. PhD thesis, Carnegie Mellon
University, May 1996.

[26] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones.
H/Direct: A Binary Foreign Language Interface for Haskell. In Proceed-
ings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, pages 153–162, Baltimore, MD, USA, September
1998.

[27] Kathleen Fisher and Robert Gruber. PADS: A Domain-Specific Lan-
guage for Processing Ad Hoc Data. In Proceedings of the 2005 ACM

241

http://www.cse.unsw.edu.au/~chak/haskell/ffi

SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 295–304, Chicago, IL, USA, June 2005.

[28] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The Next
700 Data Description Languages. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 2–15, Charleston, South Carolina, USA, 2006.

[29] Kathleen Fisher, Ricardo Pucella, and John Reppy. A Framework for
Interoperability. Electronic Notes in Theoretical Computer Science,
59(1):3–19, November 2001.

[30] Guangrui Fu. Design and Implementation of an Operating System in
Standard ML. Master’s thesis, University of Hawaii at Manoa, August
1999.

[31] Galois Inc. Cryptol Reference Manual, January 2004.
http://www.cryptol.net/doc.htm, date viewed: 25 April 2007.

[32] Benedict R. Gaster. Records, Variants, and Qualified Types. PhD
thesis, University of Nottingham, July 1996.

[33] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
Algebra Semantics and Continuous Algebras. Journal of the ACM,
24(1):68–95, January 1977.

[34] Andrew D. Gordon. Functional Programming and Input/Output. Cam-
bridge University Press, 1992.

[35] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling
Wang, and James Cheney. Region-Based Memory Management in
Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages 282–293,
Berlin, Germany, June 2002.

[36] Daniel Joeseph Grossman. Safe Programming at the C Level of Ab-
straction. PhD thesis, Cornell University, August 2003.

[37] Per Gustafsson and Konstantinos Sagonas. Native Code Compilation
of Erlang’s Bit Syntax. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Erlang, pages 6–15, Pittsburgh, Pennsylvania, October
2002.

242

http://www.cryptol.net/doc.htm

[38] Thomas Hallgren and Magnus Carlsson. Programming with Fudgets. In
Lecture Notes from the First International Spring School on Advanced
Functional Programming Techniques, pages 137–182, Bastad, Sweden,
May 1995.

[39] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew Tol-
mach. A Principled Approach to Operating System Construction in
Haskell. In Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming, pages 116–128, Tallinn, Esto-
nia, September 2005.

[40] Robert Harper, Peter Lee, and Frank Pfenning. The Fox project: Ad-
vanced Language Technology for Extensible Systems. Technical Report
CMU-CS-98-107, School of Computer Science, Carnegie Mellon Univer-
sity, January 1998.

[41] Robert W. Harper and Benjamin C. Pierce. Extensible Records With-
out Subsumption. Technical Report CMU-CS-90-102, School of Com-
puter Science, Carnegie Mellon University, Feburary 1990.

[42] P. Henderson. Purely Functional Operating Systems. In Proceedings of
the Conference on Functional Programming and Its Applications, pages
177–192, 1982.

[43] Wilson C. Hsieh, Marc E. Fiuczynski, Charles Garrett, Stefan Savage,
David Becker, and Brian N. Bershad. Language Support for Extensi-
ble Operating Systems. Technical Report TR-95-11-02, University of
Washington, 1995.

[44] Glen C. Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul
Barham, Manuel Fahndrich, Chris Hawblitzel, Orion Hodson, Steven
Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber,
and Brian D. Zill. An Overview of the Singularity Project. Technical
Report MSR-TR-2005-135, Microsoft Research, October 2005.

[45] Intel Corporation. IA-32 Intel Architecture Soft-
ware Developer’s Manual (Volume 3a), January 2006.
http://www.intel.com/products/processor/manuals/index.htm,
date viewed: 25 April 2007.

243

http://www.intel.com/products/processor/manuals/index.htm

[46] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A Safe Dialect of C. In Proceedings
of the USENIX Annual Technical Conference, pages 275–288, Mon-
terey, CA, USA, June 2002.

[47] Thomas Johnsson. Lambda Lifting: Transforming Programs to Recur-
sive Equations. In Proceedings of the 1985 Conference on Functional
Programming Languages and Computer Architecture, pages 190–203,
Nancy, France, September 1985.

[48] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge
University Press, November 1994.

[49] Mark P. Jones. Simplifying and Improving Qualified Types. Techni-
cal Report YALEU/DCS/RR-1040, Yale University, New Haven, CT,
USA, June 1994.

[50] Mark P. Jones. A System of Constructor Classes: Overloading and
Implicit Higher-Order Polymorphism. Journal of Functional Program-
ming, 5(1):1–35, January 1995.

[51] Mark P. Jones. Type Classes with Functional Dependencies. In Pro-
ceedings of the Ninth European Symposium on Programming, pages
230–244, Berlin, Germany, March 2000.

[52] Mark P. Jones, Magnus Carlsson, and Johan Nordlander. Composed,
and in Control: Programming the Timber Robot. Technical report,
OGI School of Science & Engineering at OHSU, August 2002.

[53] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice Hall, 1988.

[54] L4ka Team. L4 eXperimental Kernel Reference Manual, January 2005.
http://l4ka.org/, date viewed: 25 April 2007.

[55] Peter J. Landin. A Correspondence Between ALGOL 60 and
Church’s Lambda-Notation: Parts I/II. Communications of the ACM,
8(2/3):89–101:158–165, February/March 1965.

[56] Konstantin Läufer and Martin Odersky. Polymorphic Type Inference
and Abstract Data Types. ACM Transactions on Programming Lan-
guages and Systems, 16(5):1411–1430, 1994.

244

http://l4ka.org/

[57] John Launchbury and Simon Peyton Jones. Lazy Functional State
Threads. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 24–35, Or-
lando, FL, USA, June 1994.

[58] Xavier Leroy. CamlIDL User’s Manual. INRIA Rocquencourt.
http://caml.inria.fr/pub/old_caml_site/camlidl, date viewed:
25 April 2005.

[59] Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers
and Modular Interpreters. In Proceedings of the Twenty Second ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 333–343, San Francisco, CA, USA, January 1995.

[60] Jochen Liedtke. On µ-Kernel Construction. In Proceedings of the Fif-
teenth ACM Symposium on Operating System Principles, pages 237–
250, Copper Mountain Resort, CO, USA, December 1995.

[61] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey,
Mark Hayden, Ken Birman, and Robert Constable. Building Reli-
able, High-Performance Communication Systems from Components. In
Proceedings of the Seventeenth ACM Symposium on Operating System
Principles, pages 80–92, Kiawah Island Resort, SC, USA, December
1999.

[62] Fabrice Merillon, Laurent Reveillere, Charles Consel, Renaud Marlet,
and Gilles Muller. Devil: An IDL for Hardware Programming. In
Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation, pages 17–30, San Diego, CA, USA, October 2000.

[63] Robin Milner. A Theory of Type Polymorphism in Programming. Jour-
nal of Computer and System Sciences, 17(3):348–375, December 1978.

[64] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML—Revised. MIT Press, May 1997.

[65] John C. Mitchell and Gordon D. Plotkin. Abstract Types Have Ex-
istential Type. ACM Transactions on Programming Languages and
Systems, 10(3):470–502, July 1988.

245

http://caml.inria.fr/pub/old_caml_site/camlidl

[66] Eugenio Moggi. Computational Lambda-Calculus and Monads. In Pro-
ceedings of the Fourth Annual IEEE Symposium on Logic in Computer
Science, pages 14–23, Pacific Grove, CA, USA, June 1989.

[67] Eugenio Moggi and Amr Sabry. Monadic Encapsulation of Effects: A
Revised Approach (extended version). Journal of Functional Program-
ming, 11(6):591–627, 2001.

[68] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon
University, December 1995.

[69] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A Realistic Typed Assembly Language. In Pro-
ceedings of the ACM SIGPLAN Workshop on Compiler Support for
System Software, pages 25–35, Atlanta, GA, USA, May 1999.

[70] National Semiconductor. DP8390D/NS32490
NIC Network Interface Controller, July 1995.
http://www.national.com/opf/DP/DP8390D.html, date viewed:
25 April 2007.

[71] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael
Sperber. A Functional Notation for Functional Dependencies. In Pro-
ceedings of the 2001 ACM SIGPLAN Haskell Workshop, pages 101–120,
Firenze, Italy, September 2001.

[72] Marius Nita, Dan Grossman, and Craig Chambers. A Theory of
Implementation-Dependent Low-Level Software. Technical Report
UW-CSE Technical Report 2006-10-01, University of Washington, Oc-
tober 2006.

[73] Lars Pareto. Types for Crash Prevention. PhD thesis, Chalmers Uni-
versity of Technology and Göteborg University, 2000.

[74] PCI Special Interest Group. PCI Local Bus Specification, June
1995. http://www.pcisig.com/specifications/conventional,
date viewed: 25 April 2007.

[75] Simon Peyton Jones. Tackling the Awkward Squad: Monadic In-
put/Output, Concurrency, Exceptions, and Foreign-Language Calls in

246

http://www.national.com/opf/DP/DP8390D.html
http://www.pcisig.com/specifications/conventional

Haskell. In Engineering Theories of Software Construction, pages 47–
96. IOS Press, 2001.

[76] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, 2003.

[77] Simon Peyton Jones and Mark Shields. Lexically
Scoped Type Variables. This paper is available from:
http://research.microsoft.com/~simonpj/papers/scoped-tyvars,
date viewed: 25 April 2008, March 2004.

[78] Simon Peyton Jones and Philip Wadler. Imperative Functional Pro-
gramming. In Proceedings of the Twentieth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 71–84,
Charleston, SC, USA, 1993.

[79] Rinus Plasmeijer and Marko van Eekelen. The Concurrent Clean Lan-
guage Report, December 2001. http://clean.cs.ru.nl/, date viewed:
25 April 2007.

[80] François Pottier and Nadji Gauthier. Polymorphic Typed Defunction-
alization and Concretization. Higher-Order and Symbolic Computation,
19(1):125–162, 2006.

[81] Norman Ramsey and Mary F. Fernandez. Specifying Representations of
Machine Instructions. ACM Transactions on Programming Languages
and Systems, 19(3):492–524, 1997.

[82] John C. Reynolds. Definitional Interpreters for Higher-Order Program-
ming Languages. In Proceedings of the ACM Annual Conference, pages
717–740, Boston, MA, USA, 1972.

[83] Jonathan Shapiro, Michael Scott Doerrie, Eric Northup, Swaroop Srid-
har, and Mark Miller. Towards a Verified, General-Purpose Operating
System Kernel. In NICTA FM Workshop on OS Verification, pages
1–19, 2004.

[84] Emin Gün Sirer, Stefan Savage, Przemyslaw Pardyak, Greg P. DeFouw,
Mary Ann Alapat, , and Brian Bershad. Writing an Operating System

247

http://research.microsoft.com/~simonpj/papers/scoped-tyvars
http://clean.cs.ru.nl/

with Modula-3. In Proceedings of the First Workshop on Compiler Sup-
port for System Software, pages 134–140, Tucson, AZ, USA, February
1996.

[85] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1997.

[86] Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System F with Type Equality Coercions. In The
ACM SIGPLAN Workshop on Types in Language Design and Imple-
mentation, pages 53–66, Nice, France, January 2007.

[87] Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Disci-
pline. In Proceedings of the Seventh Annual IEEE Symposium on Logic
in Computer Science, pages 162–173, Santa Cruz, CA, USA, 1992.

[88] David Tarditi. Design and Implementation of Code Optimizations for
a Type-Directed Compilation for Standard ML. PhD thesis, Carnegie
Mellon University, 1996.

[89] The GCC Team. GCC, the GNU Compiler Collection.
http://gcc.gnu.org, date viewed: 25 April 2007, 2007.

[90] Simon Thompson. Type Theory and Functional Programming.
Addison-Wesley, 1991.

[91] Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-
typed Language Interoperability via Source Translation. Journal of
Functional Programming, 8(4):367–412, July 1998.

[92] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Sim-
ple Unification-Based Type Inference for GADTs. Technical Report
MS-CIS-05-2, University of Pennsylvania, April 2006.

[93] Philip Wadler. Views: A Way for Pattern Matching to Cohabit with
Data Abstraction. In Proceedings of the Fourteenth Symposium on
Principles of Programming Languages, pages 307–312, 1987.

[94] Philip Wadler. Linear Types Can Change the World! In Working
Conference on Programming Concepts and Methods, pages 347–359,
Sea of Galilee, Israel, 1990.

248

http://gcc.gnu.org

[95] Philip Wadler and Stephen Blott. How to Make Ad-hoc Polymor-
phism Less Ad Hoc. In Proceedings of the Sixteenth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
60–76, Austin, TX, USA, January 1989.

[96] Philip Wadler and Peter Thiemann. The Marriage of Effects and Mon-
ads. ACM Transactions on Computational Logic, 4(1):1–32, 2003.

[97] Malcolm Wallace. Functional Programming and Embedded Systems.
PhD thesis, University of York, 1995.

[98] Malcolm Wallace and Colin Runciman. Lambdas in the Liftshaft:
Functional Programming and an Embedded Architecture. In Proceed-
ings of the Seventh International Conference on Functional Program-
ming Languages and Computer Architecture, pages 249–258, La Jolla,
CA, USA, 1995.

[99] Malcolm Wallace and Colin Runciman. The Bits Between the Lambdas:
Binary Data in a Lazy Functional Language. In Proceedings of the
First International Symposium on Memory Management, pages 107–
117, Vancouver, British Columbia, Canada, 1998.

[100] Stephen Weeks. Whole-Program Compilation in MLton. Invited talk
for the 2006 wokshop on ML. http://mlton.org/, date viewed: 25
April 2007.

[101] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, September 1998.

[102] Hongwei Xi and Frank Pfenning. Eliminating Array Bound Checking
through Dependent Types. In Proceedings of ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
249–257, Montreal, Canada, June 1998.

[103] Zilog, Inc. Z80-CPU, Z80A-CPU Technical Manual, 1977. Informa-
tion about the Z80 is also available from http://www.z80.info/, date
viewed: 25 April 2007.

249

http://mlton.org/
http://www.z80.info/

250

Biographical Note

Iavor Sotirov Diatchki was born on May 1, 1977, in Sofia, Bulgaria. In 1993
he moved with his family to Zimbabwe and later he attended the University
of Cape Town in South Africa. His interests in mathematics and computer
science lead him to pursue a double major in these subjects, and in 1999 he
was awarded the degree of Bachelor of Science with Honours.

In 2000, Iavor moved to the United States to continue his education.
He started his Doctoral studies at the (then) Oregon Graduate Institute,
which later became the OGI School of Science & Engineering at OHSU.
He has worked with Prof. Mark P. Jones on a number of topics related to
programming language design and implementation.

In 2006, Iavor started a practical training program at Galois, Inc, a soft-
ware development company based in Beaverton, Oregon. There he uses his
experience with functional programming to develop high-assurance software.

251

	Introduction
	Overview
	Systems Programming
	Bitdata
	Memory Areas

	Working with Low-Level Data
	Bit Twiddling
	Low-level Representations for Bitdata
	External Specifications

	This Dissertation

	I Background and Related Work
	Related Work
	Imperative Languages
	Functional Languages
	Domain Specific Languages
	Summary

	Background: Type Systems
	The -calculus
	Hindley-Milner Polymorphism
	Qualified Types
	Overloading in Haskell

	Improvement
	Functional Dependencies

	Using Kinds
	Summary

	Natural Number Types
	Basic Axioms
	Computation With Improvement
	Rules for Equality
	Expressiveness of the System

	Other Operations
	Predicate Synonyms

	Notation for Functional Predicates
	Overview
	Type Signatures and Instances
	Contexts
	Type Synonyms
	Type Synonyms with Contexts

	Data Types
	Constructor Contexts
	Storing Evidence

	Associated Type Synonyms
	Summary

	A Calculus for Definitions
	Overview
	Matches
	Qualifiers
	Patterns
	Expressions and Declarations
	Simplifying Function Definitions
	Pattern Bindings

	Summary

	II Language Design
	Working With Bitdata
	Overview of the Approach
	Bit Vectors
	Literals
	Joining and Splitting Bit Vectors
	Semantics of the (#) Pattern

	User-Defined Bitdata
	Constructors
	Product Types
	The `as' Clause
	The `if' Clause

	Bitdata and Bit Vectors
	Conversion Functions
	Instances for `BitRep' and `BitData'
	The Type of `fromBits'

	Summary

	Static Analysis of Bitdata
	Junk and Confusion!
	Checking Bitdata Declarations
	`as' clauses
	`if' clauses
	Working with Sets of Bit Vectors

	Checking Function Declarations
	The Language
	The Logic
	The Algorithm
	Unreachable Definitions
	Simplifying Conditions

	Summary

	Memory Areas
	Overview
	Our Approach: Strongly Typed Memory Areas

	Describing Memory Areas
	References and Pointers
	Relations to Bitdata
	Manipulating Memory

	Representations of Stored Values
	Area Declarations
	External Areas

	Alternative Design Choices
	Initialization
	Dynamic Areas

	Summary

	Structures and Arrays
	User Defined Structures
	Accessing Fields
	Alignment
	Padding

	Working with Arrays
	Index Operations
	Iterating over Arrays
	Related Work

	Casting Arrays
	Arrays of Bytes
	Reindexing Operations

	Summary

	III Examples and Implementation
	Example: Fragments of a Kernel
	A Text Console Driver
	Overview of IA-32
	Segments
	Segment Selectors
	Segment Descriptors
	Task-State Segment

	Interrupts and Exceptions
	User Mode Execution
	Paging
	Summary

	Implementation
	Introduction
	Computation Values
	Representations for Bitdata
	Run Time System
	Calling Convention
	Stack Frames
	Traversing the Stack

	Summary

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Parameterized Bitdata
	Computed Bitfields
	Views on Memory Areas
	Reference Fields
	Implementation and Additional Evaluation

