
Experience Report: Statically-Typed Server APIs

Eric Mertens Iavor S. Diatchki
Galois Inc.

{emertens,diatchki}@galois.com

Abstract
In this paper, we present a technique for implementing statically
typed application APIs by making an extensive use of Haskell’s
type system. We developed the technique as a part of a larger
project that aims to produce tools for high-assurance web collab-
oration.

1. Introduction
In many web applications, the generation and interpretation of
URLs is related only by convention. It is the programmer’s respon-
sibility to ensure that an application is always generating requests
on behalf of a user that it will eventually be able to handle. This can
be a problem particularly while the functionality of an application
is still actively being developed.

In this paper, we describe how we used Haskell’s type system[7]1

to implement the API of a web enabled server. Our application uses
this specification to generate statically-checked callback URLs and
to uniformly map those callback URLs to functionality in the ap-
plication. The API description can then also be used to generate
documentation for the server’s API. The benefit of this approach
is that we are able to separate concerns about processing user re-
quests from the core logic of our application in a statically typed
manner. Because of this, we detect potential errors at compile time,
ensuring that the server interface is well defined, documented, and
that callbacks to the server match the interface. This is especially
valuable in the development stages of our server when the API was
still in flux.

We illustrate the basic idea with a running example. The web
application is a document server, and the client is a web browser.
The client needs to access a particular version of a document
stored on the server. In this example, the client might request the
document by using a URL of the following form:

/view?title=MyDoc&rev=10

The path of the URL contains the name of the method on the server
that should be invoked (in this case view), and the query string
(the text after the question mark) contains the method arguments.
The arguments are passed by using the standard form encoding for
URLs [1]: different arguments are separated by &, and the name
and value of the arguments are separated by =. In this example, we

1 With commonly used extensions to be discussed in Section 4.

[Copyright notice will appear here once ’preprint’ option is removed.]

have two arguments named “title” and “rev” with values “MyDoc”
and “10” respectively. In the server, this interface is implemented
using the following Haskell code:

view :: String -> Maybe Int -> Response
view title rev = (...)

viewSig = Method
((Arg "title" :: Arg Req String)
:> (Arg "rev" :: Arg Opt Int)
)
"view" "View a document"

(handlers, docs) = unzip
[viewSig --> view
, (...)
]

The actual handler is view, which is an ordinary Haskell function
that takes two arguments: a String and an optional Int. The ex-
ternal API for the method is specified in viewSig: here we specify
the name of the method, what it does, and the arguments it expects.
Finally, we use the operator (-->) to link the specifications with
their handlers.

Paper overview The rest of the paper is organized as follows:
In Section 2 we describe our implementation; in Section 3, we
show how this framework may be extended to support additional
features; in Section 4, we discuss some of the Haskell extensions
that make this interface possible and conclude.

2. Implementation
In this section, we present our implementation of the web function
framework. We start by describing how to represent individual
arguments, then we proceed with machinery for working with lists
of arguments, and finally we put it all together to describe the
methods of an API.

2.1 Individual Arguments
First we need to specify how to represent parameter values as
strings. These are the external representations of the values and
are used when we parse and construct URLs corresponding to API
calls. The ArgRep class provides methods to support serialization
and documentation:

class ArgRep a where
show_arg :: a -> ShowS
read_arg :: String -> Maybe a
show_type :: f a -> String

The functions show_arg and read_arg convert argument values
to and from their string representation respectively. The function
show_type returns a human readable string for the type of the ar-
gument, which we use for generating documentation. The polymor-

1 2008/4/1

phic f in show_type guarantees that show_type will only be able
to generically report the type of its argument.

Argument Signatures An important part of the signature for a
method in the API is its argument list. Each entry in the list is
an argument signature that specifies the name of the argument,
its type, and if it is a required or an optional argument. Argument
signatures are specified with the following datatype:

data Arg a b = Arg String
data Req
data Opt

The String value in the type Arg is the name of the argument. We
use phantom types[5] to specify the other properties of the argu-
ments. The first parameter, a, specifies if the parameter is required
(written with the type Req) or optional (written with the type Opt).
The second parameter, b, specifies the type of the argument value.
For example, this is how we would define the signature for an op-
tional String argument called “title”:

aTitle = Arg "title" :: Arg Opt String

Manipulating Signatures Next, we need a way to associate the
components of a URL with the parameters of a method. We process
URLs by using a separate library, which presents the query string
as a map associating argument names with the string representation
of their values:

type ArgMap = [(String,String)]

This abstraction is also useful when the method arguments come
from a source different then the query string of a URL (e.g., param-
eters may be extracted from the fields of a posted HTML form).

We process optional and required arguments in a different way.
For optional arguments we use the Maybe type to indicate if the user
provided a value for the parameter, while if a required argument
was missing we would signal an error. By using the type class we
are able to vary the mapping between argument type and result type
using the based on the lookup strategy.

class ArgRep a => Strategy r a c | r a -> c where
arg_in :: Arg r a -> ArgMap -> Either String c
arg_out :: Arg r a -> c -> ArgMap
arg_doc :: Arg r a -> ShowS

The type arguments for the class are as follows: r specifies if an
argument is required or optional, a is the type of the argument
value, and c is the type of the result that is expected by the handler
for the particular request. For required arguments, a and c are
always the same, but for optional arguments c will be Maybe a:

instance ArgRep t => Strategy Req t t ...
instance ArgRep t => Strategy Opt t (Maybe t) ...

The method arg_in is used to locate the value of an argument
within an argument map. The method arg_out is used when we
construct callback URLs, and produces the part of the query string
that will be used to encode the given argument. Finally, the method
arg_doc generates documentation for the argument, including its
name, type, and if it is required or optional.

2.2 Lists of Arguments
It is common for methods to have multiple arguments, so we need
a way to represent lists of arguments. We cannot use ordinary lists
because different arguments may be of different types, and this is
reflected in the argument signatures. Instead, we use a tuple-like
cons cell:

data a :> as = a :> as
infixr 5 :>

This operator introduces types that are essentially tuples but the
infix notation makes signature specifications significantly easier to
read and write because we avoid needing nested parentheses. Con-
tinuing our example, we define the argument list for the example
from Section 1:

view_args :: Arg Req String :> Arg Opt Int
view_args = Arg "title" :> Arg "rev"

In the rest of this section we shall use the list-like structure of the
a :> b type to define URL generation, documentation generation,
and handler application as a special kind of fold. In each case we
use a type class to define the recursion as we are dealing with
heterogeneous lists [8, 4].

Documenting Argument Lists The ArgsDoc class provides a
method for folding an argument list into a human-readable string.
We use these strings to provide documentation for our application’s
API and also to pin-point where an error might have occurred when
parsing arguments. By producing the documentation directly from
the API description values, we are more likely to keep it up-to-date
than if we were to hide that information away in comments or rely
on an external tool to produce documentation.

class ArgsDoc a where
args_doc :: a -> ShowS

instance ArgsDoc () where ...

instance (Strategy x a k, ArgsDoc args) =>
ArgsDoc (Arg x a :> args) where ...

instance Strategy r a c =>
ArgsDoc (Arg r a) where ...

The first instance is the base case which is used for methods that
have no arguments. The inductive step is in the second instance,
which uses arg_doc to document the head of the argument list,
and then it appends this to the recursively generated documentation
for the rest of the arguments. Note that the recursive call will
use args_doc at a different type, which is why we need a type
class to define such functions. Technically, these two instances
are sufficient to achieve everything that we need. However, for
convenience, we add the third instance which provides another base
case. This last instance enables us to work with argument lists, like
view_args that do not have () as their last component.

Callback URLs The Build class defines a fold from argument
lists to functions that generate URLs. Because we expose the types
of the arguments in our (:>) type, we are able to create functions
that take exactly the arguments needed to generate the URL. This
functionality is very useful when we work with dynamically gener-
ated web pages that contain callbacks to the server (e.g., a link that
requests the previous version of a document). By using our tech-
nique, we know that such web pages will not contain malformed
server callbacks.

class Build a b | a -> b where
build :: a -> URL -> b

instance Build () URL where ...

instance (Strategy r a c, Build args f) =>
Build (Arg r a :> args) (c -> f) where ...

instance Strategy r a c =>
Build (Arg r a) (c -> URL) where ...

These instances follow a similar pattern to the ones for generating
documentation but we use arg_out to compute what fields to add

2 2008/4/1

the URL. The main structural difference from the documentation
case is that here we use a two parameter type class with a functional
dependency [6], which computes the type of the resulting URL
generating function.

As an example, consider what happens when we apply build to
view_args: the result is a function of the appropriate type ensuring
that values for all of the defined arguments are added to the URL:

view_url_args :: URL -> String -> Maybe Int -> URL
view_url_args = build view_args

Request Handlers The Apply class defines a way to extract ar-
guments from a URL (in the form of ArgMap) and then applies a
function to them, as specified by a list of argument signatures. It
completes by either returning the result of the function, or an er-
ror message explaining why it was not able to extract an argument
from the ArgMap.

class Apply args func res
| args res -> func, args func -> res where
apply :: args -> func -> ArgMap -> Either String res

instance Apply () res res where ...

instance (Strategy r a c, Apply args f res) =>
Apply (Arg r a :> args) (c -> f) res where ...

instance (Strategy r a c) =>
Apply (Arg r a) (c -> res) res where ...

Again, the instances have a similar form to the previous two
definitions. This time, we have an extra argument for the final result
of applying the function. The two functional dependencies state
that the argument list paired with the function uniquely determines
the result, and vice versa—the result determines the function.

As an example of how apply works, consider what happens
when we use it with the view_args list of arguments:

view_handler :: (String -> Maybe Int -> c)
-> ArgMap -> Either String c

view_handler = apply view_args

2.3 Putting It All Together
The API of a server is specified by providing a number of method
signatures. For each method we need to provide a name, an argu-
ment list, and a description of its functionality. Because different
methods have arguments of different types, we parametrize meth-
ods by their argument lists.

data Method args = Method
{ meth_args :: args
, meth_name :: String
, meth_doc :: String
}

By combining the information in Method values, with the function-
ality for processing arguments from the previous section, we obtain
a number of useful functions for the API. For example, we can de-
fine a function that generates the documentation for a method:

methodDoc :: ArgsDoc args
=> Method args -> String

The implementation of this function uses the name and the de-
scription of a method from the method signature, and it also uses
args_doc to document the method arguments. For example, the
documentation for the method viewSig from Section 1 is as fol-
lows:

view: View a document

title :: String
rev :: Int (optional)

It is just as easy to define a function that generates URL call-
backs for a given method:

methodURL :: Build args function
=> Method args -> function

This function defines a base URL that has the method name in
the path, and then uses build to create a correctly typed function
that will add the encoded arguments to the URL query string. For
example, if we were to apply methodURL to viewSig, then we will
get a function of the following type:

viewURL :: [Char] -> Maybe Int -> URL
viewURL = methodURL viewSig

In a similar fashion we can associate method signatures with
the functions that implement the method (we call such functions
the method handlers):

methodHandler
:: Apply args handler result
=> Method args -> handler
-> String -> ArgMap -> Maybe (Either String result)

methodHandler m h path arg_map =
do guard (meth_name m == path)

return (apply (meth_args m) h arg_map)

As with methodURL, we use different types of handlers for meth-
ods with different arguments, which is why the function is poly-
morphic in handler. The String and ArgMap parameters corre-
spond to the path and query string of a URL request. The result of
methodHandler can be interpreted as follows: Nothing indicates
that the request cannot be handled by this method; Just errs will
be returned if the request matched the method name but we encoun-
tered errors while processing the method arguments; if there were
no errors with arguments, then we execute the handler and return
Just result.

Often it is convenient to associate a method signature with its
handler, and generate the documentation for that method at the
same time. To make code like that more readable, we define a
simple infix operator:

sig --> handler =
(methodHandler sig handler, methodDoc sig)

By using this operator, we can concisely specify the server’s API
in a single place, by using a pattern like this:

(handlers,docs) = unzip
[sig1 --> handler1
, sig2 --> handler2
...
]

Here sig1, sig2, etc are the method signatures for the various API
methods, and handler1, handler2, etc. are the server functions
that should be invoked to handle the corresponding requests. The
value docs contains documentation for each of the methods, while
handlers is a list of functions that will attempt to handle a request.
We can put all the handlers into a single request handler by using
the function runAPI:

runAPI
:: [String -> ArgMap -> Maybe (Either String a)]
-> String -> ArgMap
-> Maybe (Either String a)

runAPI hs p as = msum [h p as | h <- hs]

3 2008/4/1

This function picks the first handler that accepts the given requests.
Its result can be interpreted as follows: Nothing means that no
request handler applies, in which case we may want to redirect to
a default handler or signal an error and display the list of available
methods; Just errs indicates that we found a handler but there
was a problem with decoding and validating its arguments; finally,
if there were no problems, then we return Just result.

3. Other Features
Our framework lends itself to various extensions, many of which
we use in our applications already. These include: argument doc-
umentation, argument validation, multi-valued arguments, and
anonymous arguments. In this section, we briefly describe these
ideas.

Argument documentation and validation can be implemented
easily by modifying the type Arg like this:

data Arg’ a b = Arg’
{ arg_name :: String
, arg_doc_string :: String
, arg_valid :: a -> [String]
}

The field arg_doc_string contains documentation that is specific
to this argument, while the field arg_valid contains a validating
function that can examine values and return a list of problems with
them. Argument validation can be performed naturally after we
parse an argument. If we detect validation errors, we can return
an appropriate response to the user and provide an opportunity to
make corrections. It may also be feasible to perform validation on
whole lists of arguments, which may be achieved by modifying the
implementation of argument lists.

In web applications it is common to present lists of information
to the user. Often it is necessary to associate one or more form
elements to each of the elements in the list. We can achieve this
by adding a new constructor, Many, to supplement Req and Opt.
To specify the behavior of such arguments we add a new instance
to the class Strategy that collects all arguments with a common
prefix (the name of the argument) and constructs a map value that
associates the name suffixes with the corresponding values.

Often it can be visually appealing to embed arguments to meth-
ods directly in the path of a URL. For example, in the following
URL http://example.com/view/98, the number ’98’ might be
a parameter to the ’view’ method. By adding an additional type to
the argument list we can define instances to read and write such
anonymous arguments from the path.

4. Summary and Discussion
Most web applications are written in a way where the user-interface
is defined in an ad-hoc manner. Since there is no formal place that
the application’s functionality is defined, it can be difficult to verify
that documentation and calls to that functionality stay up-to-date as
development proceeds. We implemented a Haskell library that at-
tempts to address these common concerns in web-development by
allowing the compiler to verify that the web-application generates
valid URLs to well specified and automatically documenting func-
tionality.

Our technique is not limited to URL-based web-applications. It
can be applied in other RPC-based situations where the client of
an application is presented with a less typed interface than what
is available within the sever. Examples of such situations include
applications that communicate via JSON RPC [2] and command-
line interfaces.

Haskell Extensions In developing the request dispatch frame-
work, we used a number of extensions to Haskell 98 [7] that are

implemented in the GHC compiler[3]. Some of the more mundane
extensions are support for datatypes with no constructors and infix
type operators. The first of these is quite common when using the
type-level programming techniques that we used in our implemen-
tation because these empty types are essentially the constructors of
a user-defined kind. Adding support for user-defined kinds would
remove the need for empty data declarations in applications like
ours. The second extension, type level operators, is just syntactic
sugar but it made the method signatures of our API much nicer to
look at, so we consider it to be quite useful.

We also used a number of extensions to Haskell’s class system,
namely multi-parameter type classes with functional dependencies
and flexible instances2. All of these are essential for writing pro-
grams in the style that we presented in this paper.

Our Experience The statically checked server API proved useful
on a number of occasions when we made changes to the API
but forgot to update all the necessary parts of our program. Such
mistakes were detected at compile time and were easy to rectify.
A common critique of libraries that use sophisticated type level
tricks is that type errors become difficult to understand. For this
particular application this has not been a big problem, because the
top level server API is monomorphic. Overall, our experience in
using Haskell for this application was quite positive.

References
[1] HTML 4.01 Specification. http://www.w3.org/TR/html4/.

[2] JSON-RPC. http://json-rpc.org/.

[3] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/.

[4] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell ’04: Proceedings of the ACM
SIGPLAN workshop on Haskell, pages 96–107. ACM Press, 2004.

[5] Daan Leijen and Erik Meijer. Domain specific embedded compilers.
In 2nd USENIX Conference on Domain Specific Languages (DSL’99),
pages 109–122, Austin, Texas, October 1999. Also appeared in ACM
SIGPLAN Notices 35, 1, (Jan. 2000).

[6] Mark P. Jones. Type Classes with Functional Dependencies. In
Proceedings of the 9th European Symposium on Programming, ESOP
2000, Berlin, Germany, March 2000.

[7] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, 2003.

[8] Thomas Hallgren. Fun with Functional Dependencies. In Proceedings
of the Joint CS/CE Winter Meeting, Varberg, Sweden, January 2001.

2 The current version of GHC, 6.8.2, also requires an option called undecid-
able instances although solving constraints with the concrete instances that
we used is decidable.

4 2008/4/1

