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Abstract
Modern functional languages offer several attractive features to
support development of reliable and secure software. However,
in our efforts to use Haskell for systems programming tasks—
including device driver and operating system construction—we
have also encountered some significant gaps in functionality. As
a result, we have been forced, either to code some non-trivial
components in more traditional but unsafe languages like C or
assembler, or else to adopt aspects of the foreign function interface
that compromise on strong typing and type safety.

In this paper, we describe how we have filled one of these gaps
by extending a Haskell-like language with facilities for working
directly with low-level, memory-based data structures. Using this
extension, we are able to program a wide range of examples, in-
cluding hardware interfaces, kernel data structures, and operating
system APIs. Our design allows us to address concerns about repre-
sentation, alignment, and placement (in virtual or physical address
spaces) that are critical in some systems applications, but clearly
beyond the scope of most existing functional languages.

Our approach leverages type system features that are well-
known and widely supported in existing Haskell implementations,
including kinds, multiple parameter type classes, functional depen-
dencies, and improvement. One interesting feature is the use of a
syntactic abbreviation that makes it easy to define and work with
functions at the type level.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Data types and structures

General Terms Design, Languages

Keywords Data representation, memory areas, memory manipu-
lation, systems programming, qualified types, improvement

1. Introduction
Many of the computers in use today are hidden in embedded sys-
tems where they provide functionality for a wide range of devices,
from household appliances, to safety and security critical applica-
tions such as vehicle navigation and control, bank ATMs, defense
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applications, and medical devices. Modern programming languages
offer many features that could potentially help developers to in-
crease their productivity and to produce more reliable and flexible
systems. For example, module systems help to manage the com-
plexity of large projects; type systems can be used to detect bugs at
compile-time; and automatic storage management techniques elim-
inate a common source of errors. As such, it is disappointing that
industry still relies quite heavily on older, less robust languages, or
even on lower-level assembly code programming.

This situation is the result of many factors, some entirely non-
technical. However, we believe that at least part of the problem has
to do with genuine difficulties in matching the results and focus of
programming language research to the challenges of systems de-
velopment. Other projects have already explored the potential for
using higher-level languages for lower-level programming: a small
sample includes the Fox Project [10], Ensemble [19], Cyclone [12],
and Timber [15], for example. Based on these, and on our own ex-
perience using Haskell [16] to develop device drivers and an operat-
ing system kernel [9], we have noticed that high-level language de-
signs sometimes omit important functionality that is needed to pro-
gram at the level of hardware interfaces, kernel data structures, and
operating system APIs. We have therefore been working to iden-
tify the gaps in functionality more precisely, and to investigate the
design of language features that might fill them.

In our previous work [4], we focused on bitdata (i.e., bit-level
data structures that can fit in a single machine word or register).
Bitdata values are widely used in systems software, for example,
to describe the values stored in a device control register or the
flags passed to an operating system call. Of course, it is possible
to manipulate such values using standard bit-twiddling techniques,
without special language support. The resulting code, however, can
be hard to read and error prone: we know (first-hand!) that it is
very easy to specify the wrong number of bits for a shift opera-
tion, or to give the wrong mask for a bitwise ‘and’, and that the
resulting bugs can be subtle and hard to find. Moreover, when we
reduce all bitdata to the lowest-common denominator of a single
machine word, we also lose the ability to catch errors like these
using compile-time type checking. To address these issues, we de-
signed and implemented language features that allow programmers
to define strongly typed, high-level views, comparable to program-
ming with algebraic datatypes, on the underlying bitdata structures.
A critical detail in making this work is the ability to specify bit-
level layout and representation information precisely and explicitly;
this is important because the encodings and representations that are
used for bitdata are often determined by third-party specifications
and standards that must be carefully followed by application pro-
grammers and language implementations.



In this paper, we describe new language extensions that pro-
vide direct support for manipulating memory-based data structures.
Our approach does not require a new type system, but instead
leverages the support for kinds, qualified types and improvement
that is already provided in existing Haskell implementations. Al-
though some syntactic extensions are used to allow programmers
to describe and reserve storage for memory-based data structures,
most of the features that we need are provided by a collection of
new built-in functions, types, and predicate/type class symbols. In
essence, our goal is to provide the same levels of flexibility and
strong typing for byte-oriented data structures in memory as our
bitdata work provides for bit-oriented data structures in registers.
Given that analogy, one might expect us to refer to these mem-
ory structures as ‘bytedata’. However, because we want to focus on
higher-level views rather than the underlying byte values, we will
instead call them ‘memory areas’, or simply ‘areas’.

1.1 Characteristics of Memory Areas
We have found a wide range of uses of memory areas in our explo-
rations of systems-level programming. It is instructive to describe
some of these examples, and to emphasize their markedly different
character to the list- and tree-like data structures that are common
in traditional functional programming. Specific details of these ap-
plications, however, will not be assumed in the rest of the paper.

One notable feature is that many examples are specific to a par-
ticular processor architecture, hardware device, or OS kernel. Ex-
amples from the Intel IA32 processor family [11] include: page
directories and page tables; interrupt and segment descriptor ta-
bles; the task state segment, which contains data used to support
hardware-based multitasking; and the exception frame where user
registers, like the stack and instruction pointer, are saved when an
interrupt occurs. Examples for the L4 microkernel [25] include: the
kernel information page (KIP) that is mapped into every address
space, and the user-space thread control blocks (UTCBs) that are
used to communicate values to and from the kernel. Similar exam-
ples can be found for other processor architectures and for other
operating systems, both inside the kernel implementation, and out-
side in the interfaces that the kernel presents to user processes.

These memory area structures have fixed sizes, rigidly defined
formats/representations, and are often subject to restrictions on the
addresses at which they are stored. An IA32 page table, for exam-
ple, is always 4K bytes long and must begin at an address that is
a multiple of 4K. In this case, the alignment of the structure on
a 4K boundary is necessary to ensure that each page table can be
uniquely identified by a 20 bit number (i.e., by a 32 bit address in
which the least significant 12 bits are zero). In other cases, align-
ment constraints are used for performance reasons or because of
cache line considerations. Storage allocation for memory areas is
often entirely static (for example, an OS may allocate a single inter-
rupt descriptor table that remains in effect for as long as the system
is running), or otherwise managed explicitly (e.g., by implementing
a custom allocation/garbage collection scheme).

1.2 Example: Video RAM
To illustrate these ideas in a practical setting, we will consider the
task of writing a driver for text mode video display on a generic PC
in Haskell. This is a particularly easy device to work with because
it can be programmed simply by writing appropriate character
data into the video RAM, which is a memory area whose starting
physical address, as determined by the PC architecture, is 0xb8000.
The video RAM is structured as a 25×80 array (25 rows of 80
column text) in which each element contains an 8 bit character
code and an 8 bit attribute setting that specifies the foreground and
background colors. We can emulate a simple terminal device with
a driver that provides the following two methods:

• An operation, cls, to clear the display. This can be implemented
by writing a space character, together with some suitable default
attribute, into each position in video RAM.
• An operation, putc, that writes a single character on the dis-

play and advances the cursor to the next position. This method
requires some (ideally, encapsulated) local state to hold the cur-
rent cursor position. It will also require code to scroll the screen
by a single line, either when a newline character is output, or
when the cursor passes the last position on screen; this can be
implemented by copying the data in video RAM for the last 24
lines to overwrite the data for the first 24 lines and then clearing
the 25th line.

There is nothing particularly special about these functions, but
neither can be coded directly in Haskell because it does not include
mechanisms for identifying or writing to physical addresses.

Instead, if we want to code or use operations like this from
a functional program, then we will typically require the use of a
foreign function interface [24, 2]. For example, we might choose
to implement both methods in C and then import them into Haskell
using something like the following declarations:

foreign import ccall "vid.h cls" cls :: IO ()
foreign import ccall "vid.h putc" putc :: Char → IO ()

Although this will provide the Haskell programmer with the desired
functionality, it hardly counts as writing the driver in Haskell!

Alternatively, we can use the Ptr library, also part of the Haskell
foreign function interface, to create a pointer to video RAM:

videoRAM :: Ptr Word8
videoRAM = nullPtr ‘plusPtr‘ 0xb8000

This will allow us to code the implementations of cls and putc di-
rectly in Haskell, using peek and poke operations to read and write
bytes at addresses relative to the videoRAM pointer. But now we
have lost many of the benefits that we might have hoped to gain by
programming our driver in Haskell! For example, we can no longer
be sure of memory safety because, just as in C, an error in our use
of the videoRAM pointer at any point in the program could result
in an unintentional, invalid, or illegal memory access that could
crash our program or corrupt system data structures, including the
Haskell heap. We have also had to compromise on strong typing;
the structured view of video RAM as an array of arrays of char-
acter elements is lost when we introduce the Ptr Word8 type. Of
course, we can introduce convenience functions, like the following
definition of charAt in an attempt to recreate the lost structure and
simplify programming tasks:

charAt :: Int → Int → Ptr Word8
charAt x y = videoRAM ‘plusPtr‘ (2 * (x + y*80))

This will allow us to output the character c on row y, column x using
a command poke (charAt x y) c. However, the type system will
not flag an error here if we accidentally switch x and y coordinates;
if we use values that are out of the intended ranges; or if we use an
attribute byte where a character was expected.

1.3 This Paper: Strongly Typed Memory Areas
In this paper, we describe how a functional language like Haskell
or ML can be extended to provide more direct, strongly typed sup-
port for memory based data structures. In terms of the preceding
example, we can think of this as exploring the design of a more
tightly integrated foreign function interface that aims to increase
the scope of what can be accomplished in the functional language.
We know that we cannot hope to retain complete type or memory
safety when we deal with interfaces between hardware and soft-
ware. In the the case of our video driver, for example, we must trust
at least that the video RAM is located at the specified address and



that it is laid out as described previously. Even the most careful lan-
guage design cannot protect us from building a flawed system on
the basis of false information. Nevertheless, we can still strive for
a design that tries to minimize the number of places in our code
where such assumptions are made, and flags each of them so that
they can be easily detected and subjected to the appropriate level of
scrutiny and review.

Using the language features described in the rest of this paper,
we can limit our description of the interface to video RAM to a
single (memory) area declaration like the following:

type Screen = Array 25 (Array 80 ScreenChar)
area videoRAM = 0xb8000 :: Ref Screen

It is easy to search a given program’s source code for potentially
troublesome declarations like this. However, if this declaration is
valid, then any use of the videoRAM data structure, in any other part
of the program, will be safe. This is guaranteed by the type system
that we use to control, among other things, the treatment of refer-
ences and arrays, represented, respectively, by the Ref and Array

type constructors in this example. For example, our approach will
prevent a programmer from misusing the videoRAM reference to ac-
cess data outside the allowed range, or from writing a character
in the (non-existent) 96th column of a row, or from writing an at-
tribute byte where a character value was expected. Moreover, this is
accomplished (a) using the native representations that are required
by the video hardware and (b) without incurring the overhead of ad-
ditional run-time checks. The first of these, using native represen-
tations, is necessary because, for example, the format of the video
RAM is already fixed and leaves no room to store additional in-
formation such as type tags or array bounds. The second, avoiding
run-time checks, is not strictly necessary, but it is certainly very
desirable, especially in the context of many systems applications
where performance is an important concern.

As a simple example, the following code shows how we can use
the ideas introduced in this paper to implement code for clearing
the video screen:

cls = forEachIx (λ i →
forEachIx (λ j →

writeRef (videoRAM @ i @ j) blank))

In this definition, forEachIx is a higher-order function that we use
to describe a nested loop over all rows and columns, writing a blank
character at each position.

1.4 Paper Outline
The following outline summarizes the topics that are covered in the
rest of this paper, and also includes the relevant section numbers.

• The key features in the design of our language extension for
memory areas is introduced in Section 2; this includes details
of the types that are used to describe memory areas, and of the
operations that are defined in each case.
• Many of the areas that we encounter in practice are actually

structured as tables or arrays; Section 3 describes the mecha-
nisms that we provide to allow efficient and safe access to the
elements of these structures.
• As we have already seen, it is sometimes necessary to ensure

that the starting address of a memory area is aligned on a
particular byte boundary. We deal with this in Section 4 by
including alignment information in pointer and reference types.
The resulting system allows us to enforce alignment constraints
using compile-time type checking.
• Storage for memory areas is introduced using the area decla-

ration described in Section 5. Using type information, the com-
piler can determine the amount of space, the alignment con-

straints, and the start address of each memory area that is de-
clared. It is also possible to specify an explicit region as part
of an area declaration, which will be used at link-time to con-
strain or guide the start address of the area to a particular ad-
dress or range of addresses. This is the only form of area dec-
laration that can compromise safety. Fortunately, however, it is
easy to identify and extract all of the declarations of this form
from a given program so that they can be checked carefully for
possible errors.
• Although we have a strong preference for strongly typed mem-

ory areas, there are situations when it is useful to be able to
‘cast’ between different region types. Section 6 describes the
operations that we provide to support this, and the limitations
that we impose to ensure that the conversions are safe.
• One interesting feature of our design is the use of an abbrevi-

ation mechanism for describing functions on types. Section 7
explains how this relates to the recent proposal for associated
type synonyms [3].
• In the closing sections of the paper, we provide brief comments

about the structure of our prototype implementation (Section 8);
a survey of related work in areas of language design, foreign
function interfaces, and interface definition languages (Sec-
tion 9); a suggestion for some future work (Section 10); and
a conclusion to summarize our contributions (Section 11).

2. Overview: Language Design
We would like to work in a high-level functional language, reaping
the benefits of strong static typing, polymorphism, and higher-order
functions, and, at the same time, be able to manipulate values that
are stored in the machine’s memory, when we have to. In this sec-
tion, we describe a collection of primitive types that can be used
to describe memory areas, and a corresponding collection of prim-
itive operations. We begin by describing some preliminary details
of our type system (Section 2.1), and then we introduce types for
describing references (Section 2.2), representations for stored val-
ues (Section 2.3), pointers (Section 2.4), arrays (Section 2.5), and
structures (Section 2.6).

2.1 Preliminaries
Our design assumes a fairly standard, Haskell-like type system that
uses kinds to classify different types, and predicates, much like
Haskell’s type classes, to capture relationships between types. Kind
and type inference for such a system does not require any signif-
icant new work, and can be implemented using the same, well-
developed machinery that is used in existing Haskell compilers.

Kinds. The syntax of kinds, represented here by κ, is as follows:

κ ::= * | Area | Nat | κ → κ | Pred

The kind * classifies the standard types in a functional languages,
whose values are first-class and can be passed freely as function
arguments or results. A distinct kind, Area is needed to classify
memory areas because these are not first-class entities; for example,
a memory area cannot be used directly as a function argument or
result, and must instead be identified by a reference or a pointer
type. Function kinds of the form κ → κ are used to classify type
constructors. For example, the pointer type, Ptr, introduced below,
has kind Area → *, which tells us that, if a is a valid area type then,
Ptr a is a well-formed type of kind *. We also include a kind Nat,
whose elements are written as natural numbers: 0, 1, 2, and so on.
This is essentially the same framework that we used in our work on
bitdata [4]. For example, we include a type constructor Bit of kind
Nat → *, and write Bit n for the type containing all bit vectors of
length n.



Predicates. Our system also includes a kind Pred to classify pred-
icates (or constraints) on types. The standard Haskell type class Eq,
for example, corresponds to a type constructor of kind * → Pred.
In addition, we will also use several predicates to describe arith-
metic relations between the different types of kind Nat:

( + = ) :: Nat → Nat → Nat → Pred
( * = ) :: Nat → Nat → Nat → Pred
(GCD = ) :: Nat → Nat → Nat → Pred
(2^ = ) :: Nat → Nat → Pred

For example, as the notation suggests, a predicate of the form x+y=z

is an assertion that the sum of the numbers corresponding to the
natural number types x and y is equal to the number corresponding
to z. In practice, any two of the three variables here will uniquely
determine the third, which we represent with a collection of func-
tional dependencies, { (x y Ã z), (y z Ã x), (z x Ã y) } [14].
In fact our implementation relies on the more general use of im-
provement [13], which includes functional dependencies as a spe-
cial case, and is already implemented in some Haskell implemen-
tations. The goal of improvement is to find substitutions that can
be applied to inferred types and constraints without changing the
underlying set of satisfiable instances. For example, if we infer a
predicate 0+x=z, then we can use improvement with a substitution
that maps z to x, reducing the constraint to 0+x=x, and then elimi-
nating it completely using a separate simplification step. As a more
interesting example, if we infer a predicate of the form 2+3=z, then
we can use improvement to determine that z must be 5. Finally,
given a predicate of the form 3+y=2, we can use improvement to
infer that there are no solutions for y and then abort the type in-
ference process with an appropriate error. Clearly, we can also do
similar things with multiplication (x*y = z), greatest common di-
visor (GCD x y = z) and power of two (2^x = y) predicates.

The constraint solver in our current implementation is param-
eterized by a small collection of rules that are used to generate
improving substitutions. It is quite simple and certainly not com-
plete, but this has not been an issue in practice: the improvement
strategy allows us to abstract over unsolved constraints, just like a
normal type class constraint, and defer them until they are more
fully instantiated. Type checking of explicit type signatures is more
complicated in the presence of improvement because it requires us
to give up on the notion of a purely syntactic canonical form for
principal types and to accept a slightly weaker notion of principal
satisfiable types instead. Our experience suggests that this is a small
price to pay for the flexibility that we gain by using improvement.

Syntactic Abbreviations for Functions on Types. Although we
have formalized the operations on Nat as relations, it is often
convenient to think of them as functions. For example, in our
original work on bitdata, we defined the following operation for
concatenating bit vectors:

(#) :: (a + b = c) ⇒ Bit a → Bit b → Bit c

While this gives a general polymorphic type for (#), the notation
is a little unwieldy and it might seem more natural to write the
following type instead:

(#) :: Bit a → Bit b → Bit (a + b)

Attractive as this might appear, the introduction of an associative,
commutative function into the type language makes type inference
much more complicated. In addition, we cannot completely replace
the three-place addition predicate with the two-place addition func-
tion because the latter cannot express constraints like x+y=3.

Fortunately, there is a way to have our cake and eat it too! We
can treat the second type for (#) above as a purely syntactic ab-
breviation for the first: Any expression of the form a+b in a type
can be replaced with a new variable, c, so long as we also add a

predicate (a+b=c) at the front of the type. Using this translation,
for example, we can write Bit n → Bit (n+2) as a shorthand for
(n+2=m) ⇒ Bit n → Bit m. The same notation can also be used
with the other predicate forms described previously. In fact, we can
generalize this idea even further. If P t1 . . . tn tn+1 is an n + 1-
place predicate in which the last argument is uniquely determined
by the initial arguments, then we will allow an expression of the
form P t1 . . . tn in a type as an abbreviation for some new vari-
able, a, subject to the constraint P t1 . . . tn a. Note that, because
of the functional dependency, this translation does not introduce
any ambiguity. For example, if the expression P t1 . . . tn appears
twice in a given type, then we will initially generate two constraints
P t1 . . . tn a and P t1 . . . tn b. However, from this point we can
use improvement to infer that a = b and then to eliminate the du-
plicated predicate.

This simple technique gives us the conciseness of a functional
notation in many situations, without losing the expressiveness of
the underlying relational predicate. We will use this abbreviation
notation quite frequently in the following sections, and we expect
that it will prove to be useful in other applications beyond the scope
of this paper. We discuss this further, particularly with respect to
the recent proposal for ‘associated type synonyms’, in Section 7.
Our approach is also very similar to the ‘functional notation for
functional dependencies’ suggested by Neubauer et al. [20], but it
is slightly more general (because it admits multiple dependencies)
and it does not require any changes to the concrete syntax of
Haskell other than support for functional dependencies.

2.2 References
A reference is the address of a memory area, and reference types
are introduced using the following primitive type constructor:

Ref :: Area → *
instance Eq (Ref a)

For example, if T is a description of a memory area (i.e., it is of
kind Area), then Ref T (of kind *) is an address in memory where
such an area is stored. Our references serve a purpose similar to
pointers in C, but they support a much smaller set of operations.
For example, we cannot perform reference arithmetic directly, or
turn arbitrary integers into references. Such restrictions enable us
to make more assumptions about values of type Ref. In particular,
references cannot be ‘invalid’ (for example Null). This is in the
spirit of C++’s references (e.g., int&) [22], and Cyclone’s notnull
pointers [12].

2.3 Stored Values
In our previous work on bitdata [4], we described a mechanism
for specifying and working with types that have explicit bit-pattern
representations. We would like to use such types as basic building
blocks for describing memory areas. To do this we need to relate
abstract types to their concrete representations in memory. Unfor-
tunately, knowing the bit pattern for a value is not sufficient to de-
termine its representation in memory, because different machines
use different layouts for multi-byte values. To account for this we
provide two type constructors that create basic Area types:

LE, BE :: * → Area

The constructor LE is used for little endian (least significant byte
first) encoding, and BE is used for big endian encoding. For exam-
ple, the type BE (Bit 32) describes a memory area that contains a
32 bit vector in big endian encoding. In addition to these two con-
structors, the standard library for a particular machine provides a
type synonym Stored which is either LE or BE depending on the
native encoding of the machine. Thus, writing Stored (Bit 32)

describes a memory area containing a 32 bit vector in the native
encoding of the machine.



To manipulate memory areas that contain stored values we use
the class ValIn, which relates memory areas to the type of value
that they contain:

class ValIn r t | r → t where
readRef :: Ref r → IO t
writeRef :: Ref r → t → IO ()

The predicate ValIn r t asserts that the memory area r contains
an abstract value of type t. The operations of the class are used to
read and write the stored values. Depending on the target architec-
ture and the encoding used, implementations should perform the
necessary conversions.

Note that because the type t is uniquely determined by the rep-
resentation type r, we can use the syntactic abbreviation notation
introduced previously and use ValIn in type expressions as a partial
function of kind Area → *. For example, we could write the type
of readRef like this:

readRef :: Ref a → IO (ValIn a)

Our system provides instances of the ValIn class for the little
and big endian encodings of bit-vectors and bitdata types with
sizes that are a multiple of 8.

The types of readRef and writeRef include a monad, IO, that
encapsulates the underlying memory state. For the purposes of this
paper, we need not worry about the specific monad that is used. For
example, we might replace IO with the standard ST monad, while
in House [9], we might use the H (hardware) monad.

2.4 Pointers
In some situations, it is convenient to work with pointers, which are
either a valid reference, or else a null value. From this perspective,
we can think of pointers as an algebraic data type:

data Ptr a = Null | Ref (Ref a) deriving Eq

Note that in general implementations have to treat the Ptr type spe-
cially, because we allow pointers to be stored in memory areas, and
so they need to have a known representation. In our implementation
we follow the standard convention of representing Null with 0, and
other pointers with a non-zero address.

2.5 Arrays
Memory-based array or table structures can be described using the
following type constructor:

Array :: Nat → Area → Area

The type Array n t describes a memory area that has n adjacent t
areas. We can obtain a reference to an element of an array using the
function (@).

(@) :: SizeOf a b ⇒ Ref (Array n a) → Ix n → Ref a

This operation performs pointer arithmetic to compute the offset of
an element. The type Ix n describes the set of valid array indexes,
and enables us to avoid run-time bounds checking. The details of
how this works are described in Section 3. The predicate SizeOf

indicates that the indexing function needs to know the size of the
elements in the array; this is discussed in Section 5.

2.6 Structures
Another way to introduce types of kind Area is by writing struc-
ture declarations, each of which begins with the keyword struct,
specifies a name and optional parameters for the new type, and lists
a number of fields and constraints on the type. Figure 1 shows the
syntax of the different kinds of fields that can be used. The list of
all fields determines the layout of the corresponding memory area:
The first field is placed at the lowest memory addresses, and subse-
quent fields follow at increasing addresses.

field = label :: type Labelled field
| .. Computed padding
| type Anonymous field (padding)

Figure 1. Syntax of fields

As an example, the following definition describes the static part
of the header of an IP4 packet that might be used in a network
protocol stack.

struct IP4StaticHeader where
ipTag :: Stored IPTag
serviceType :: Stored ServiceType
total_length :: BE (Bit 16)
identification :: BE (Bit 16)
fragment :: BE Fragment
time_to_live :: Stored (Bit 8)
protocol :: Stored Protocol
checksum :: BE (Bit 16)
source_addr :: BE Addr
destination_addr :: BE Addr

It is particularly important in this application to specify that multi-
byte values are stored using big-endian representation to ensure
IP4StaticHeader structures are interpreted correctly, even on plat-
forms where the default encoding is little-endian; we accomplish
this here by using BE instead of Stored.

Labelled fields are the most conventional form of field. They
define an offset into the structure that contains a region of memory
described by the type of the field. To access the fields of a structure,
we reuse the family of selector operators (one for each label) from
our work on bitdata [4]:

class Has_l a t where
(.l) :: t → a

To make this possible, structure declarations introduce rules that are
used to discharge the Has constraints. The rule for a field l :: a in
a struct T b is of the form: ... ⇒ Has_l (Ref a) (Ref (T b)).
Thus, if we have a reference r to some structure T b, then r.l is
a reference to a piece of memory of type a that corresponds to the
field l of r. The ... in the axiom contains assumptions about the
type parameters of the structure that enable us to verify that we
have a well-defined structure and to compute the offset of the field.

The other fields that may appear in a structure provide various
ways to specify padding. By ‘padding’, we mean a part of the
structure that takes up space, even though the programmer does
not intend to use it. Most commonly, padding is used to conform
to an external specification, or to satisfy alignment constraints for
the fields in a structure. The simplest way to provide padding in
a structure is to use an anonymous field: the programmer writes a
type, but does not provide a label for it. We can even introduce a
type synonym:

type PadBytes n = Array n (Stored (Bit 8))

and then write PadBytes n in a struct to add n bytes of padding.
Some memory areas have a fixed size but do not use all of that

space. Such structures typically have a number of fields, and then
there is ‘the rest’, the unused space in the structure. To define such
structures using only anonymous fields, programmers would have
to compute the amount of padding in the structure by hand. To
simplify their job, we provide the computed padding field, which
is an anonymous field whose size is automatically computed from
the context, and from size constraints specified by the programmer.
There can be at most one such field per structure because there is no
way to determine the sizes of multiple padding fields. As a concrete
example, consider implementing a resource manager that allocates



memory pages, each of which is 4096 bytes long. A common way
to implement such a structure is to use a ‘free list’: each page
contains a pointer to the next free page, and nothing else. Using
some more special syntax, we may describe the memory region
occupied by a page like this:

struct FreePage of size 4K where
nextFree :: Stored (Ptr FreePage)
..

This example illustrates a few new pieces of concrete syntax: (1)
The optional of size t part of a struct declaration is used to
specify the size of the structure; an error will be reported if the
declared size is either too small, or else if there is no computed
padding field for any surplus bytes. (2) The literal 4K is just a
different way to write 4096. We also support M (for ‘mega’, times
220) and G (for ‘giga’, times 230). Like other literals, these can be
used in both types and values. (3) The field declarations follow
the keyword where, and follow the usual Haskell convention for
declarations: they can either be explicitly separated with semi-
colons, or (like the example above) use layout to reduce clutter in
the code. (4) The .. in the above example is concrete syntax for a
computed padding field and is not a meta-notation.

3. Accessing Array Elements
In this section we describe a simple mechanism that allows us
to access the elements of an array both efficiently and without
compromising safety. Instead of using arbitrary integers as array
indexes, we use a specialized type that guarantees that we have a
valid array index:

Ix :: Nat → *

Values of type Ix n correspond to integers in the range 0 to n-1, so
they can be used to index safely into any array of type Array n a.
(In particular, Ix 0 is an empty type.) There is an instance of ValIn
for Ix types, so that we can store them in memory.

3.1 Basic Indexes
We can use the following operations to work with Ix values:

toIx :: Index n ⇒ Int → Ix n
fromIx :: Ix n → Int
minIx, maxIx :: Index n ⇒ Ix n
bitIx :: (2^m = n, Index n) ⇒ Bit m → Ix n

The function toIx enables us to treat integers as indexes. As with
other integral types, index literals have a modulo arithmetic seman-
tics, which may be a bit confusing. For example, the literal 7 con-
sidered as an index of type Ix 5, is the same as the literal 2; both
can be used to access the third element of an array. We use the type
Int to be consistent with other library functions in Haskell, but a
more appropriate type would be an unsigned integer type, similar to
Word32. Note that this operation in general requires a division (or
dynamic check), although, for statically known expressions such
as literals, we can perform the division at compile time. For index
sizes that are powers of 2, we can replace the division with a cheap
mask operation; this special case is captured using the bitIx oper-
ator, which turns n-bit values into indexes of size 2n.

The predicate Index :: Nat → Pred identifies natural num-
bers that are valid indexes. We require that 0 is not a valid index,
because, as we already mentioned, Ix 0 is an empty type, and so
we should not be able to make values of that type (e.g., if it was
not for the Index constraint, toIx would result in division by 0). In
addition, we may want to put an upper limit to the size of arrays.
For example, because indexes can be stored into memory areas,
they have a fixed size (a machine word), and so we do not support
arbitrarily large indexes.

The function fromIx ‘forgets’ that a value is an index and turns
it into an ordinary number (again an unsigned type would be more
appropriate). The values minIx and maxIx refer to the smallest and
largest index in an Ix type. Indexes may also be compared for
equality and are ordered.

3.2 Indexes as Iterators
The operations we have described so far are safe and expressive
enough to support any style of indexing, because toIx can turn
arbitrary numbers into indexes. This however comes at the cost of a
division (dynamic check), which is quite expensive. In this section
we explain how such overheads can be avoided in common cases.

Programs often need to traverse an array (or a sub-range of an
array). Usually this is done with a loop that checks for the end of the
array at every iteration, and, if not, manipulates the array directly
without any dynamic checks. We could get something similar by
adding increment and decrement functions:

inc :: Index n ⇒ Ix n → Maybe (Ix n)
dec :: Index n ⇒ Ix n → Maybe (Ix n)

These functions increment (or decrement) an index, unless we are
at the end (or beginning) of an array. Using these functions, we
could write a function to sum up all the elements in an array like
this:

sumArray a = loop 0 minIx
where
loop tot i = do x ← readRef (a @ i)

let tot’ = tot + x
case inc i of

Just j → loop tot’ j
Nothing → return tot’

This function can be compiled without too much difficulty into
code that is quite similar to the corresponding C version.

A problem with this approach is that we perform two checks at
every loop iteration to see if we have reached the end of the array:
one in the function inc, and another one immediately after in the
case statement. Furthermore, this is perhaps the most common use
of inc and dec, so it would be nice to avoid the extra check.

To solve the above problem we introduce an increment and
decrement pattern. The pattern either fails if we cannot increment
or decrement an index, or succeeds and binds a variable to the new
value. We observe that Haskell’s n + k patterns do exactly this for
decrementing. For example we may write the factorial function in
Haskell like this:

fact x = case x of
n + 1 → x * fact n
_ → 1

If x is a (positive) non-zero number, then the first branch of the
case succeeds and n is bound to a value that is 1 smaller then the
value of x.

To support incrementing, we can use a symmetric n-k pattern
(not present in Haskell), which succeeds if we can increment an
index by k and still get a valid index. Using these ideas we can
write the above loop more directly:

sumArray a = loop tot minIx
where
loop tot i = do x ← readRef (a @ i)

let tot’ = tot + x
case i of

j - 1 → loop tot’ j
_ → return tot’

If for some reason we need the functions inc and dec we can
implement them in the language like this:



inc (j - 1) = Just j
inc _ = Nothing

dec (j + 1) = Just j
dec _ = Nothing

Notice that to increment we use a minus in the pattern, and to
decrement we use a plus. This is reasonable because we are pattern
matching, but it can be confusing, and might lead us to prefer
an alternative notation. In practice, we expect that programmers
will not write too many explicit loops like the examples above.
Instead, they will use higher-level combinators, analogous to map

and fold for lists, that are implemented with the incrementing and
decrementing patterns. For example, we can abstract the looping
part of the above example like this:

accEachIx :: Index n ⇒ a → (a → Ix n → IO a) → IO a
accEachIx a f = loop a minIx

where
loop a i = do b ← f a i

case i of
j - 1 → loop b j
_ → return b

This function, accEachIx is quite general, and can be used to give
a much more compact definition of sumArray:

sumArray a = accEachIx 0 (λ tot i →
do x ← readRef (a @ i)

return (tot + x))

What we have described so far works well for traversing an entire
array, but in some situations we may need to traverse only a sub-
range of the array. This may happen in situations where we use
an array to store data, but perhaps not all locations in the array
contain meaningful data. We can deal with such situations by using
a guard on a pattern that terminates a loop before we reach the end
of the array. Unfortunately, then we end up having two checks per
iteration again: one to check if incrementing would produce a valid
index, and another to see if we have reached the last element that
is of interest to us. It seems plausible that a compiler may be able
to optimize away the first of the checks. However we can achieve
the same by generalizing the increment and decrement patterns to
contain a guard that determines when the pattern fails. For example,
we can rewrite the function accEachIx to operate on a sub-range of
an array like this:

accEachIxFromTo :: Index n ⇒
Ix n → Ix n → a → (a → Ix n → IO a) → IO a

accEachIxFromTo start end a _ | end < start = return a
accEachIxFromTo start end a f = loop a start

where
loop a i = do b ← f a i

case i of
(j - 1 | j ≤ end) → loop b j
_ → return b

The pattern (j - 1 | j ≤ end) succeeds if we can increment i
by 1, and the result is less then or equal to end. In the example
above i and end are both expressions of type Ix n, and if the pat-
tern succeeds we introduce the variable j of type Ix n. Notice that
the type of end ensures that we cannot get an index value that is too
large. Omitting the guard (e.g., as in the previous examples) is a
short-hand for (j - 1 | j ≤ maxIx). The case for decrementing
patterns is symmetric, where we allow the guard to specify a differ-
ent lower bound than minIx. Figure 2 contains the formal semantics
of the increment and decrement patterns. Note that we interpret pat-
terns here as functions from values to a Maybe type that returns the
bindings produced by a successful match. In both cases we compute
an intermediate value x′, which is not necessarily a valid index, and
then perform a check to determine if the pattern can succeed. Be-

(x− k | x ≤ e) = λi. do let x′ = i + k

guard (x′ ≤u e)

return {x 7→ x′}
(x + k | e ≤ x) = λi. do let x′ = i− k

guard (e ≤s x′)

return {x 7→ x′}

Figure 2. Semantics of index patterns

cause we think of indexes as being integers on a real machine, it is
important to not forget that we are using modulo arithmetic. This is
why in incrementing patterns we use an unsigned comparison, and
in decrementing patterns we use a signed comparison.

4. Alignment
In some situations (often when communicating with hardware),
data stored in memory has to satisfy certain alignment constraints.
This means that the address where the data is stored should be a
multiple of some number k (i.e., if we consider the entire memory
as an array of elements of size k bytes, then the data will be a valid
element). Usually k is a power of 2, and so the lowest log2 k bits
in the address of the data are 0. Such assumptions are often used in
hardware devices to pack more data in fewer bits.

To support aligned data, we use a more general version of Ref
that we call ARef (for aligned reference):

ARef :: Nat → Area → *
type Ref = ARef 1

Compared to what we have seen so far, we have added a new
parameter to track the alignment of the reference. For example,
ARef 4K FreePage is a 4K aligned reference to a free page. Note
that the reference type, Ref, used in previous sections is just a
special case that allows alignment on any byte boundary.

With this change in mind we need to revisit the types of the
operations that manipulate references. The building blocks of all
memory areas are stored abstract values. Because they do not have
any sub-components, the change to aligned references is trivial. For
example, the type of readRef becomes:

readRef :: ARef a r → IO (ValIn r)

For arrays and structures, we need to do some work because we
want to determine the alignment of their sub-components from the
alignment of the entire structure. To see how we do this, consider
a structure S, that has a sub-component of type T , at offset n (see
Figure 3). Given an a aligned pointer to S, the sub-component will

b n

ARef a S ARef b T

Figure 3. Alignment of a sub-component

be aligned on any boundary b that divides both a and n. The largest
alignment we can deduce for the sub-component is therefore the
greatest common divisor of a and n. For example, if a structure is
aligned on a 4 byte boundary (i.e., a = 4), a field that is at offset 6
bytes (i.e., n = 6) would be aligned on a 2 byte boundary, because
gcd(4, 6) = 2.

With this insight, we can give a new, more precise type for the
array indexing operator:

(@) :: ARef a (Array n t) → Ix n
→ ARef (GCD a (SizeOf t)) t



Accessing the fields of a structure is similar: the maximum align-
ment of a field is the greatest common divisor of the alignment of
the structure, and the sum of the sizes of the preceding fields. For
example, consider a structure Pair, defined like this:

struct Pair s t where
fst :: s
snd :: t

Then the two selectors have the following types:

fst :: ARef a (Pair s t) → ARef a s
snd :: ARef a (Pair s t) → ARef (GCD a (SizeOf s)) t

Occasionally we may need to ‘forget’ that a reference has a
given alignment. We can do this with the function realign:

realign :: GCD a b = b ⇒ ARef a t → ARef b t

Alternative Design Choice. In the design we outlined above the
accessor operations computed the largest possible alignment for the
sub-component. An alternative approach is to drop the requirement
that we compute the largest alignment. This results in more poly-
morphic types for the accessors. For example, array indexing could
be typed like this:

type a ‘Divs‘ b = (GCD a b = a)
(@) :: (b ‘Divs‘ a, b ‘Divs‘ SizeOf t) ⇒

ARef a (Array n t) → Ix n → ARef b t

The predicate a ‘Divs‘ b states that a divides b. The benefit of
this approach is that because the type is more polymorphic pro-
grammers do not need to use realign to forget alignments. The
drawback is that it may lead to more ambiguous types, because of
‘intermediate’ alignments that cannot be determined uniquely, for
example if we need to index in a two dimensional array.

The two designs are equivalent in expressive power: we can
get the first design from the second by simply adding the more
restrictive type signature; to get the second from the first we can
compose accessors with realign.

Nested Structures. Programmers should be careful when nesting
structures in code where alignment is important. To illustrate what
may go wrong, consider the following two types:

type L s t u = Pair (Pair s t) u
type R s t u = Pair s (Pair t u)

These types describe essentially the same memory areas: both have
three fields that are of types s, t, and u respectively. The functions
that access the fields, however, have subtly different types. Con-
sider, for example, the type of the function the accesses the third
field:

thirdL :: GCD a (SizeOf s + SizeOf t) = b ⇒
ARef a (L s t u) → ARef b u

thirdL x = x.snd

thirdR :: GCD (GCD a (SizeOf s)) (SizeOf t) = b
ARef a (L s t u) → ARef b u

thirdR x = x.snd.snd

While both functions return references to the same type of area,
the references have different alignment constraints. To see this,
consider the case where s is of size 3 bytes, t is of size 1 byte, and
the alignment a is 4. Then thirdL will produce a 4 byte aligned
reference, because gcd(3 + 1, 4) = 4, while thirdR will produce
a 1 byte aligned reference, because gcd(gcd(4, 3), 1) = 1. The
reason this happens is that we lose some information when we
access a field, namely the fact that the field was a part of the larger
context in the structure.

5. Area Declarations
To declare memory references, programmers use an area declara-
tion, which resembles a type signature:

area name [in region] :: type

Area declarations specify a name for the reference to the area, an
optional region (to be discussed shortly), and a monomorphic type
for the reference. We use the type to determine how much memory
is required to accommodate the area, and also how that storage
should be aligned. We formalize this with a class:

class AreaDecl t
instance (Alignment a,SizeOf t n) ⇒ AreaDecl (ARef a t)

The predicate Alignment identifies alignments supported by an
implementation (often alignments have to be a power of 2).

To compute the size of an area we use the predicate SizeOf:

class SizeOf (t :: Area) (n :: Nat) | t → n where
sizeOf :: Ref t → Int
memCopy :: Ref t → Ref t → IO ()
memZero :: Ref t → IO ()

instance Index n ⇒ SizeOf (Array n t) (n * SizeOf t)
instance SizeOf (Pair s t) (SizeOf s + SizeOf t)

To compute the size of an array we multiply the size of each
element by the number of elements in the array. The size of a
structure is the sum of the sizes of the fields in the structure. The
sizes of stored pointers and indexes are as wide as the machine
word on the target architecture. The sizes of stored bitdata types
are determined by the number of bits in the representations.

For example, here is how we can define an area called buffer

that contains 4096 bytes and is aligned on a 4 byte boundary:

type Byte = Bit 8
area buffer :: ARef 4 (Array 4K (Stored Byte))

Note that even though programmers can write strange types like
LE (Int → Int) they cannot use them to declare memory areas,
because they lack SizeOf instances, and so the implementation
cannot determine how much memory to allocate.

5.1 Area Representation
Areas do not (need to) reside in the heap like ordinary abstract
values. In addition, we were careful to arrange things in such a way,
that areas do not contain any abstract values, and, in particular, they
cannot contain pointers to the heap. For these reasons there is no
need to garbage collect areas.

Initialization. We were also careful to ensure that only types that
contain 0 can be stored in memory. We can see this by considering
what atomic types can be stored in memory: Ix, Ptr, and bitdata
types. Notice that references cannot be stored in memory. This
choice makes it easy to initialize memory areas: an implementation
just needs to place the memory areas in a part of memory that
contains zero values (the bss segment, for example).

An alternative design choice would be to provide a means for
programmers to specify the initial values for memory areas, either
for each storable type, or for each declaration. With such a design,
an implementation would have to initialize memory areas properly
before executing the main program. There is still the question of
how to initialize areas. For example, Cyclone provides special no-
tation to make initializing arrays easier. Also, we need to make sure
that the initializers themselves do not use uninitialized areas. This
is one place where purity helps because operations that read and
write to memory have monadic types, and we can restrict initializ-
ers to being pure. This also removes the problem of specifying in
what order the initializers should be executed.



Area Attributes. In some special circumstances, there are more
restrictions on where areas reside in memory and how they should
be initialized. In such situations programmers may annotate area
declarations with an optional region using the keyword in. Such re-
gion annotations are similar to the different segments provided by
assemblers. All areas annotated with the same region are grouped
together. Areas with explicit region annotations are not automati-
cally initialized or allocated by an implementation, instead the im-
plementation requires an external specification describing what to
do with such memory regions. At present we do not track the re-
gions in the types of the references as Cyclone [12], but this may
be a useful future extension.

One example of when such advanced configuration may be
needed is when working with memory mapped devices (e.g., video
RAM). Then the memory area is required to be at a particular fixed
location in memory.

type Row = Array 80 ScreenChar
area screen in videoRAM :: Ref (Array 25 Row)

As another example consider implementing a resource manager
in an OS kernel. A common way to do that is to reserve a large area
of virtual addresses, but only to back them up with concrete physi-
cal memory on demand. In such situations, we cannot initialize the
(virtual) memory area ahead of time, because that would require us
to back up the entire virtual area with physical memory.

area memPages in virtual
:: ARef 4K (Array PageNum FreePage)

In general, programs that manipulate page tables can be type unsafe
because updating page tables can have a profound effect on the
entire program, even though it appears to be a simple write to
memory. To ensure the correctness of such programs one needs
something more advanced than the Hindley-Milner type system.

6. Conversion Primitives
In this section we discuss a number of operations that are used to
change the description of a memory area. Most of the operations
are like type casts in C/C++, in that they do not need to perform
any work at run-time. Unlike C/C++ however, we only provide a
limited set of casts, that does not compromise the invariants we
enforce with types.

Arrays of Bytes. One set of casting operations deals with convert-
ing between structured descriptions of memory areas and arrays of
bytes. These operations are safe for all memory areas, except ones
that contain stored pointers or indexes, because these types have
special invariants that we need to preserve. We use the class Bytes

to classify types that can be converted to and from arrays of bytes:

type BytesFor t = Array (SizeOf t) (Stored Byte)

class Bytes t where
fromBytes :: ARef a (BytesFor t) → ARef a t
toBytes :: ARef a t → ARef a (BytesFor t)

There are built-in instances for representation types of abstract
values, except for the representation types of pointers and indexes.
We also have instances for arrays and structs:

instance (Index n, Bytes t) ⇒ Bytes (Array n t)
instance (Bytes s, Bytes t) ⇒ Bytes (Pair s t)

The instance for arrays allows to turn an array of structured data
into an array of bytes. Programmers may also use a deriving

mechanism to derive instances for user defined structures. These
only work if the system can ensure that all the fields of a structure
are in the Bytes class.

As an example of how we might use these operations, we show
an alternative implementation of a function that clears the screen:

cls’ = forEachIx (λ i → writeRef (arr @ i) blank2)
where
blank2 = toBits blank # toBits blank

arr :: (4 * n = SizeOf Screen)
⇒ Ref (Array n (Stored (Bit 32)))

arr = fromBytes (toBytes videoRAM)

The function cls’ first casts the video RAM to an array of double
words, and then uses a single loop to write pairs of blank screen
characters to the entire area.

Views on Arrays. Another set of useful casting operations involve
arrays. The operations do not perform any computation, instead
they change the way we perform indexing on arrays. The first
operation allows us to split an array into two smaller arrays:

splitArr :: (Index x, Index y, GCD a (x * SizeOf t) = b) ⇒
ARef a (Array (x + y) t) →

( ARef a (Array x t), ARef b (Array y t) )

When we change the view on an array, often we need to convert
indexes that we had into the original array into indexes to the new
array. We do this with the following operation:

splitIx :: (Index x, Index y) ⇒
Ix (x + y) → Either (Ix x) (Ix y)

The type Either is a simple sum type, that tells us if the original
index was in the left (first) array, or in the right array.

Another thing we might want to do with arrays is to change their
dimension. We can use the following two functions to do that:

toMatrix :: ARef a (Array (x * y) t) →
ARef a (Array x (Array y t))

fromMatrix :: ARef a (Array x (Array y t)) →
ARef a (Array (x * y) t)

The corresponding operations to convert indexes are:

divIx :: (Index x, Index y) ⇒
Ix (x * y) → (Ix x, Ix y)

mulIx :: (Index x, Index y, x * y = z, Index z) ⇒
(Ix x, Ix y) → Ix z

The operation divIx turns an index of a one dimensional array into
an index into a two dimensional array by performing a division.
The operation mulIx does the opposite, using multiplication.

7. Associated Type Synonyms
In this section we explore in more details what we can do using
the abbreviation notation for functional predicates. This discussion
is of a general nature, and readers that are mostly interested in the
system programming aspects of our work can skip this section.

Associated Type Synonyms. Recently there was a proposal to
allow type synonyms to be associated with Haskell’s type classes
[3]. For example, this is how we could define a class that captures
some general operations on graphs:

type Edge g = ...
class Graph g where

type Node g
outEdges :: Node g → g → [Edge g]

In this example, g is a type that represents graphs, Node g is the
type of the nodes in the graph, and outEdges is a function that
computes the outgoing edges from a given node in the graph.
The novel component here is the associated type synonym Node g.
When programmers define instances of the class Graph, they need
to defined the type Node g, as well as the methods in the class.



type AdjMat = Array (Int,Int) Bool
instance Graph AdjMat where

type Node AdjMat = Int
outEdges = ...

The essence of the idea is that Node is a function on types, whose
domain is restricted to types that are in the Graph class. Every
instance of Graph provides another equation for the type function
Node.

Using Abbreviations. It is interesting to note that we can achieve
something very similar by just using ordinary functional dependen-
cies and the abbreviations that we used throughout this paper. For
example here is how we program the Graph example. First we de-
fine (the kind of) a type function called Node that has graphs as its
domain:

class Graph g ⇒ Node g n | g → n

Next we define the Graph class pretty much as before:

class Graph g where
outEdges :: Node g → g → [Edge g]

Note that using the abbreviation Node g makes the type of outEdges
look just like the type we get when we use associated type syn-
onyms. The desugared type of outEdges is like this:

outEdges :: Node g n ⇒ n → g → [Edge g]

Defining instances for the Graph class is also very similar:

instance Node AdjMat Int
instance Graph AdjMat where

...

The encoding used here is entirely mechanical: given a class with
some associated type synonyms, we define the class in the same
way as we would if we had associated type synonyms, except
that we replace each associated type with a new class that has a
functional dependency and the original class as a super class.

This representation allows us to attach constraints to the associ-
ated type synonyms if we need them. For example, suppose that we
wanted to state that all graphs should have nodes that are in the Eq

class. We can modify the Node function to capture such a constraint:

class (Graph g, Eq n) ⇒ Node g n | g → n

The only difference from before is the Eq constraint on n. It is not
clear how to do this with associated type synonyms, although they
could probably be extended to accommodate such examples.

Arithmetic Predicates Another interesting set of examples are the
arithmetic operators that we used extensively in this paper. Using
associated type synonyms we could try to define addition like this:

class Add a b where
type a + b

Then we can write a + b in types much in the same way as we
would with the abbreviation we suggested. However, in addition
we have to annotate the context with an extra Add constraint.
This is not ideal, because now we have two names (Add and (+))
for a single concept. Also with more complex expressions, such
as x + (y + z), the extra constraints could get complex (e.g.,
(Add y z, Add x (y + z))).

8. Implementation
We have implemented the ideas described in this paper in hobbit,
a prototype compiler that also includes support for bitdata [4]. The
implementation is fairly standard for a pure strict language with
a Haskell-like type system: the front-end checks that user speci-
fied types have valid kinds, and then it type checks the program.

We eliminate the functional predicate notation during kind check-
ing, although, in principle, we could do that earlier. During type
checking, we compute and annotate programs with evidence for
the predicates.

Our implementation follows the ideas of Tolmach [26] for com-
piling a functional language to C, although we generate assembly
directly in the final pass (other approaches should also work). We
perform a whole program analysis to make programs completely
monomorphic. This enables us to resolve evidence completely at
compile-time, and also means that we can avoid having to change
representations when calling polymorphic functions. After that, we
perform defunctionalization, turning unknown higher-order func-
tions and monadic computations into explicit values.

9. Related Work
There has been a lot of research on how to make writing system
software safer and simpler. In this section we point the reader to
work that is closely related to our own, and which explores alter-
native ways of achieving goals that are similar to ours. The related
work falls broadly into three categories: programming language de-
sign, foreign functions interfaces (FFIs), and interface description
languages (IDLs). We consider our work to belong to the first cate-
gory, but many of the topics that we discuss in this paper also show
up in the design of FFIs, in particular when interfacing a high-level
with a low-level language. IDLs are not as closely related, but are
still of interest because they provide various ways of describing
data layouts.

9.1 Programming Languages
In this section we compare our design to the choices made in some
other programming languages (the list is by no means exhaustive).

C The de facto language for systems programming at present is
C [17]. The literature on Cyclone [12] has a good description of
the general benefits and drawbacks of using C. Usually C is con-
sidered to be suitable for systems programming because it grants
programmers control over low-level data representation. However,
the specification of the language leaves a number of representation
details to particular implementations. For example, the fields in a C
structure should be in consecutive (increasing) memory locations,
but implementations are allowed to insert padding to properly align
fields. This can lead to subtle bugs and inconsistencies when a pro-
gram written for a particular implementation is compiled with a
different one. The fundamental problem is that structures are used
for two rather different purposes: to define abstract records and to
describe memory regions. In our design there is a clear separation
between these two cases, as records are of kind *, while memory
structures are of kind Area.

Another interesting difference between our design and C is the
treatment of alignment. In C alignment is a property of each type,
while in our design it is a property of references (and by extension
pointers). If alignment is associated with types, then care needs
to be taken when constructing compound types such as structures
and arrays, because an implementation needs to check that all
subfields are properly aligned (there is still the design choice if
implementations should insert implicit padding). We explored these
ideas in an earlier version of the design presented in this paper.
Separating the description of the layout of memory areas, and the
restriction of where it can exist in memory is conceptually simpler,
and more flexible, because we can impose different alignment
constraints on areas with the same layout.

Cyclone Cyclone is a safe dialect of C [12, 23, 8]. At the surface
Cyclone programs look quite similar to C programs, but in fact
the Cyclone system supports many high-level language features, in



particular an advanced type system. This makes it closely related
to our work, and it is interesting to briefly compare some of the
major design decisions. At a high-level there is a big difference in
style: Cyclone is an imperative language, while we are interested in
using a (pure) functional language. This is not a clear cut distinction
because in either paradigm we can write programs that resemble
the other, but the basic paradigm of a language influences what
programs are easier to write. For example, notice that in our design
there are very few monadic functions, reflecting the fact that a lot
of the operations we need are pure functions.

The discussion about C structures also applies to Cyclone: the
Cyclone compiler inserts implicit padding to align fields within
structures.

There are many similarities in the handling of arrays and point-
ers in Cyclone and our design. Cyclone annotates arrays with their
sizes like we do, they support not-nullable pointers (like our Ref),
nullable pointers (like our Ptr), and pointers to sequences of ele-
ments, which are similar to a reference (or pointer) to an array in
our design. The main difference between the two approaches is how
to ensure that the invariants that these types state are preserved. Cy-
clone uses a flow analysis described in Chapters 6 and 7 of Daniel
Grossman’s PhD dissertation [8] to ensure that the invariants hold.
We rely on a restricted set of operations (including pattern match-
ing) to ensure that the invariants for the types hold.

9.2 Foreign Function Interfaces
Moby Moby is an experimental programming language. The rea-
son we mention it here is that its FFI introduces the important no-
tion of data level interoperability [7]. The idea is that in addition to
an FFI, we should also have a foreign data interface (FDI) that en-
ables us to manipulate foreign data without first having to marshal
it. In the Moby system this is done by using tools that understand
the foreign data and can generate intermediate code for the Moby
compiler to manipulate it.

Our design is in much the same spirit, but instead of using tools
to translate an external data specification, we specify the layout of
the data directly in the high level language using the types of kind
Area. We do this because our goal is to write as much as possible of
our systems programs in the high level language. We can still write
a bit of C or assembly code when we have to, because the memory
types have concrete representations. If we want to use our approach
to interface to large C programs than we would have to write tools
that translate the C types to our Area types.

SML/NJ The C FFI of Standard ML of New Jersey (SML/NJ)
[2], is also based on data level interoperability. To manipulate C
data, programmers use a library that provides an ML encoding of
the C type system. The ML types are implemented using a library
of unsafe operations that should not be used by FFI programmers.
There are many resemblances between this work and our own, for
example in the FFI library arrays are also annotated with their size
(but this is not used to provide safe indexing). There are also a
number of differences, largely due to our differing goals, and the
use of different technology.

The SML/NJ FFI tries to closely follow the design of C, which
we don’t because we are not designing an interface to C. This
makes our job simpler, because we do not need to worry about
many of the details of the C type system (e.g., void*). In addition
we can provide things that are not in C, for example references with
alignment constraints.

Another goal of the FFI is to not modify ML (except perhaps
for the unsafe library). Our design was not restricted by such
constraints. For example, we utilize a built-in natural numbers kind,
instead of encoding natural numbers in the ML type system. We
also provide special notation (e.g., pattern matching) to enable

programmers to express exactly what they mean. This potentially
leads to more readable programs, and simpler implementations.

Finally we make extensive use of qualified types, which are
not available in ML. This enables us to avoid passing explicit type
parameters or resorting to using ‘fat’ pointers, as is done in the FFI.

9.3 Interface Description Languages
IDLs are small languages that describe various data representa-
tions. Usually IDLs come together with tools that can turn IDL
specifications into code that can encode and decode data. IDLs have
their roots in remote procedure calls — invoking a remote proce-
dure requires a programmer to encode the data for transmission
over the network, and then later decode the result of the remote
procedure. This process is called marshalling the data. The same
idea has been used for communication between programs written in
different languages, as they often use different representations for
values. For example the HaskellDirect tool [5] uses an IDL to auto-
matically generate marshalling code for Haskell values. A similar
approach is used by CamlIDL [18] to marshal OCaml values. Other
interesting IDLs include PADS [6], which is used to describe the
format of data streams, DataScript [1] which can nicely describe the
formats of various binary files, and SLED [21] which can describe
the formats of machine instructions. HaskellDirect and CamlIDL
bare resemblances to our work because they are fairly restricted
— the IDLs resemble C header files with additional annotations.
PADS, DataScript, and SLED are used to describe more complex
data formats and are more similar to parsing tools like YACC.

10. Future Work
In this paper we showed how we can annotate references with align-
ment constraints. It may be useful to annotate references with other
properties: the SML/NJ FFI keeps track of which references are
read-only [2], while the Cyclone system can differentiate between
references that point to data in different regions of memory [12].
We could simply add more parameters to the reference type, but
this quickly gets unwieldy. One way to solve this problem would be
to add records at the type level. With such an extension, references
could still have a single parameter describing their properties, and
programmers can impose constraints only on the properties that are
of interest. It seems likely that this feature could also be used in
many other situations to reduce clutter in types or predicates with
multiple arguments.

11. Conclusions
We showed how to extend a modern functional language with sup-
port for manipulating data with an explicit memory representation.
Our design uses advanced but fairly well understood programming
language tools, such as polymorphism, qualified types, and im-
provement. The motivation for working with such data stems from
our desire to write system-level software in a high-level functional
language.

We use the kind system to separate types with abstract and
concrete representations. We use types to enforce a number of
invariants about values: we distinguish between references and
pointers, we use special types to index safely into arrays, and we
can enforce and compute alignment constraints on data.

We also presented a simple, yet novel way of working with
predicates with functional dependencies. It enables us to treat such
predicates as type functions, which improves the readability of the
types in our programs. This idea is general and can be used in any
program that uses functional predicates.
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A. Quick Reference
The following code lists the main type constructors and predicates
that are used by our language design. These were introduced incre-
mentally in the body of the paper, but are repeated here together as
a simple quick reference.

-- Type constructors
Bit, Ix :: Nat → *
ARef, APtr :: Nat → Area → *
LE, BE :: * → Area
Array :: Nat → Area → Area

-- Manipulate stored values
class ValIn r t | r → t where

readRef :: ARef a r → IO t
writeRef :: ARef a r → t → IO ()

-- instances : little or big endian abstract types
-- with concrete representations (no ARef)

-- Manipulate memory areas
class SizeOf t (n :: Nat) | t → n where

sizeOf :: ARef a t → Int
memCopy :: ARef a t → ARef b t → IO ()
memZero :: ARef a t → IO ()

-- instances : area types that do not contain ARef

-- Convert to/from byte arrays
type BytesFor t = Array (SizeOf t) (Stored Byte)
class Bytes t where

fromBytes :: ARef a (BytesFor t) → ARef a t
toBytes :: ARef a t → ARef a (BytesFor t)

-- instances : area types that do not contain
-- ARef, APtr, Ix

-- Subsets of the natural numbers
Index :: Nat → Pred
Alignment :: Nat → Pred

Figure 4. A summary of types and predicates


