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Abstract
We present a technique for integrating GHC’s type-checker with
an SMT solver. The technique was developed to add support for
reasoning about type-level functions on natural numbers, and so
our implementation uses the theory of linear arithmetic. However,
the approach is not limited to this theory, and makes it possible to
experiment with other external decision procedures, such as rea-
soning about type-level booleans, bit-vectors, or any other theory
supported by SMT solvers.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Constraints

Keywords Type systems, SMT, constraint solving

1. Introduction
For a few years now, there has been a steady push in the Haskell
community to explore and extend the type system, slowly approxi-
mating functionality available in dependently typed languages [16–
18]. The additional expressiveness enables Haskell programmers to
maintain more invariants at compile time, which makes it easier to
develop reliable software, and also makes Haskell a nice language
for embedding domain specific languages [15]. The Haskell com-
piler is not just a translator from source code to executable binaries,
but it also serves as a tool that analyzes the program and helps find
common mistakes early in the development cycle.

Unfortunately, the extra expressiveness comes at a cost: Haskell’s
type system is by no means simple. Writing programs that make use
of invariants encoded in the type system can be complex and time
consuming. For example, often one spends a lot of time proving
simple theorems about arithmetic which, while important to con-
vince the compiler that various invariants are preserved, contribute
little to the clarity of the algorithm being implemented [18].

Given that in many cases the proofs constructed by the program-
mers tend to be fairly simple, we can’t help but wonder if there
might be a away to automate them away, thus gaining the benefits
of static checking, but without cluttering the program with trivial
facts about, say, arithmetic. This paper presents a technique to help
with this problem: we show one method of integrating an SMT
solver with GHC’s type checker. While we present the technique in
the context of Haskell and GHC, the technique should be applicable
to other programming languages and compilers too.

The approach presented in this paper uses similar tools—
namely SMT solvers—to Liquid Haskell [14]. However, the de-
sign and overall goals of the two techniques are somewhat different
and, indeed, it makes perfect sense to use both systems in a sin-
gle project. Liquid Haskell enables Haskell programmers to aug-
ment Haskell definitions with refinements of the types, which may
be used to verify various properties of the program. The refine-
ment language is separate from the language of Haskell types—it
is quite expressive, and is really aimed at formal verification. As
such, a function will have its ordinary type and, in addition, a re-
finement type, which serves to specify some aspect of the behavior
of the function. The checks performed by Liquid Haskell are en-
tirely separate from the ones performed by GHC’s type checker.
This is quite different from the technique described in this paper,
which shows how to integrate an SMT solver directly into GHC’s
type checker. The benefit of of extending GHC’s type checker is
that we don’t need to introduce a separate language for specifica-
tions, instead we may reuse types directly. Ultimately, however, the
two approaches are not at all mutually exclusive. The next section
gives a brief flavor of what can be achieved using the techniques
from this paper.

1.1 Examples
We illustrate the utility of the functionality provided by our algo-
rithm with a few short examples. A very common example in this
area is to define a family of singleton types that links type-level
natural numbers to run-time constants that represent them:

data UNat :: Nat -> * where
Zero :: UNat 0
Succ :: UNat n -> UNat (n + 1)

Here we’ve used a unary representation of the natural numbers, and
each member of the family, UNat n, has exactly one inhabitant,
namely the natural number n represented in unary form. Because
we are using a GADT, we can pattern match on the constructors of
the type and gradually learn additional information about the value
being examined. The kind Nat is inhabited by types corresponding
to the natural number (e.g., 0, 1, . . . ), and (+) is a type-level
function for adding natural numbers.

Next, we define a function to add two such numbers:

uAdd :: UNat m -> UNat n -> UNat (m + n)
uAdd Zero y = y
uAdd (Succ x) y = Succ (uAdd x y)

While this is a simple definition, and we are unlikely to have gotten
it wrong, it is nice to know that GHC is checking our work! Had
we made a mistake, for example, by mis-typing the recursive call
as uAdd x x, we would get a type error:

Could not deduce (((n1 + n1) + 1) ~ (m + n))
from the context (m ~ (n1 + 1))



It is a small detail, but it is worth pointing out that our GHC
extension would have been just as happy had we defined the type
of Succ like this:

Succ :: UNat n -> UNat (1 + n)

The difference is in the return type, in the one case it is n + 1,
and in the other it is 1 + n. While to a human this looks like an
insignificant difference, in many systems it is significantly easier to
work with the one definition, but not the other.

The unary natural numbers are handy if we are planning to do
iteration. However, if we are working on some sort of divide-and-
conquer algorithm, we often need to split the input in two. In this
situation, a different family of singletons is more useful:

data BNat :: Nat -> * where
Empty :: BNat 0
Even :: (1 <= n) => BNat n -> BNat (2 * n)
Odd :: BNat n -> BNat (2 * n + 1)

This is another singleton family, where the type BNat n is inhab-
ited by a single member, n. However, in this case we learn different
information by pattern examining the values: an Empty value may
not be split, an Even value may be split into two equal non-empty
parts, while an Odd value may be split into two parts, and there will
be one element left over.

So, how do we add such numbers? There are more cases to
consider:

bAdd :: BNat m -> BNat n -> BNat (m + n)
bAdd Empty x = x
bAdd x Empty = x
bAdd (Even x) (Even y) = Even (bAdd x y)
bAdd (Even x) (Odd y) = Odd (bAdd x y)
bAdd (Odd x) (Even y) = Odd (bAdd x y)
bAdd (Odd x) (Odd y) = Even (bSucc (bAdd x y))

The correctness of this definition is much less obvious, and we did
make a couple of mistakes before getting it right! In the last case,
we use the auxiliary function bSucc, which increments a binary
natural number by one:

bSucc :: BNat m -> BNat (m + 1)
bSucc Empty = Odd Empty
bSucc (Even x) = Odd x
bSucc (Odd x) = Even (bSucc x)

Note that while these examples are somewhat simplistic, they
demonstrate the utility of the technology, and show that using the
extension feels quite natural to a Haskell programmer.

A more conventional example is the type of fixed-length vec-
tors:

data Vec :: Nat -> * -> * where
Nil :: Vec 0 a
Cons :: a -> Vec n a -> Vec (n + 1) a

Note that this is very similar to UNat, except that it also stores a
value in each Cons node. The operation of appending two vectors
together follows exactly the same pattern as uAdd. An example of
a function that is meaningful for vectors, bit no so much for the
unary natural numbers is reversing a vector, which may be defined
as follows using our extension:

vecReverse = go Nil
where
go :: Vec m a -> Vec n a -> Vec (m + n) a
go xs Nil = xs
go xs (Cons y ys) = go (Cons y xs) ys

This example also illustrates that our extension does not change
any type signature requirements beyond what is already in GHC:

the helper function go needs a type signature, because it pattern-
matches using GADT constructors, however the type of reverse
can be inferred as usual:

*Example> :type vecReverse
vecReverse :: Vec n a -> Vec n a

1.2 Structure of the Paper
The rest of the paper is organized as follows: we start with a brief
overview of SMT solvers from a user’s perspective (Section 2).
Then, in Section 3, we introduce the basic concepts of GHC’s
constraints solver, which is necessary for putting the rest of the
paper in context. Section 4 contains the details of the algorithm for
integrating an SMT solver with GHC, and Section 5 explains other
theories that could be added to GHC using the same technique.
Finally, Section 6 discusses the possibility of using the ideas in this
paper, and previous work on the implementation of SMT solver, to
engineer a modular constraint solver.

2. SMT Solvers
This section contains an introduction to the core functionality of a
typical SMT solver, and may be skipped by readers who are already
familiar with similar tools.

2.1 The Core Functionality
SMT solvers, such as CVC4 [5], Yices [1], and Z3 [12], implement
a wide collection of decision procedures that work together to
solve a common problem. They have proved to be a useful tool in
both software and hardware verification. From a user’s perspective,
the core functionality of an SMT solver is fairly simple: we may
declare uninterpreted constants, assert formulas, and check if the
asserted formulas are satisfiable. Checking for satisfiability simply
means that we are asking the question: are there concrete values
for the uninterpreted constants that make all asserted formulas true.
The solver may respond in one of three ways:

• sat, which means that a satisfying assignment exists,
• unsat, which means that a satisfying assignment does not exist,
• unknown, which means that the solver did not find an answer,

often this is due to reaching some sort of limit (e.g, the solver
used up too much time).

This example uses the notation of the SMTLIB standard [4]:

(declare-fun x () Int)
(assert (>= x 0))
(assert (= (+ 3 x) 8))
(check-sat)

The example declares an integer constant, x, asserts some
formulas—using a prefix notation—about it, and then asks the
solver if the asserted formulas are satisfiable. In this case, the an-
swer is affirmative, as choosing 5 for x will make all formulas true.
Indeed, if an SMT solver reports that a set of formulas is satisfi-
able, typically it will also provide a satisfying assignment, which
maps the uninterpreted constants to concrete values that make the
formulas true.

The same machinery may also be used to prove the validity of
a universally quantified formula. The idea is that we use the SMT
solver to look for a counter-example to the formula, and if no such
example exists, then we can conclude the formula is valid. For
example, if we want to prove that ∀x.(3+x = 8) =⇒ x = 5, then
we can use the SMT solver to try to find some x that contradicts it:



(declare-fun x () Int)
(assert (= (+ 3 x) 8))
(assert (not (= x 5)))
(check-sat)

To invalidate an implication, we need to assume the premise,
and try to invalidate the conclusion, which is why the second
assertion is negated. In this case the SMT solver tells us that the
asserted formulas are not satisfiable, which means that there are no
counter examples to the original formula and, therefore, it must be
valid.

2.2 Incremental Solvers
Many SMT solvers have support for asserting formulas incremen-
tally. This means that the solver performs a little work every time
a new formula is asserted, rather than collecting all formulas and
doing all the work in batch mode, once we ask about satisfiability.
Furthermore, incremental solvers have the ability to mark a partic-
ular solver state, and then revert back to it, using a stack discipline.
Here is an example:

(declare-fun x () Int)
(assert (= (+ 5 x) 3))
(push 1)

(assert (>= x 0))
(check-sat)

(pop 1)
(check-sat)

This example asks the solver two questions, and the answer to
the first one is unsatisfiable, while the answer to the second
one is satisfiable and the solution is x = -2.

The push command instructs the solver to save its state, then
proceed as normal. When the solver encounters a pop command, it
reverts to the last saved state.

This functionality is extremely useful when we want to ask
many questions that are largely the same, and differ only in a few
assertions: we can perform the majority of the work once, and
then use push and pop to just assert the differences. In our small
example, the work for the first assertion is shared in both calls to
check-sat.

3. GHC’s Constraint Solver
In this section, we present relevant aspects of GHC’s constraint
solver. The full details of the algorithm [7] are beyond the scope
of this paper.

3.1 Implication Constraints
During type inference, GHC uses implication constraints, which
do not appear in Haskell source code directly. An implication con-
straint is, roughly, of the formG =⇒ W , whereW is a collection
of constraints that need to be discharged, and G are assumptions
that may be used while dischargingW . In the GHC source code, the
constraints in G are referred to as given constraints, while the ones
inW are known as wanted constraints. The intuition behind an im-
plication constraint is thatW contains the constraints that were col-
lected while checking a program fragment, while G contains local
assumptions that are available only in this particular piece of code.
For example, consider the following program fragment, which uses
a GADT:

data E :: * -> * where
EInt :: Int -> E Int

isZero :: E a -> Bool
isZero (EInt x) = x == 0

When we check the definition of isZero, we end up with an
implication constraint like this:

(a ~ Int) => (Num a, Eq a)

Here, a is the type of the pattern variable x, the wanted constraints
arise from the use of 0 and (==) respectively, and the given con-
straint is obtained by pattern matching with EInt because we know
that the type parameter of E must be Int.

3.2 The Constraint Solver State
Implication constraints are solved by two calls to the constraint
solver: the first call processes (i.e., assumes) the given constraints,
and the second one processes the wanted constraints.

The constraint solver has two central pieces of state: the work
queue, and the inert set. The work queue contains constraints that
need to be processed, while the inert set contains constraints that
have already been processed. Constraints are removed—one at a
time—from the work queue, and interacted with the solver’s state.
In the process of interaction we may solve constraints, generate
new work, or report impossible constraints. If nothing interesting
happens, then we relocate the constraint to the inert set. It is also
possible that during interaction a previously inert constraint may be
reactivated in a rewritten form and re-inserted in the work queue.
A single invocation of the constraint solver keeps interacting con-
straints until the work queue is empty and all constraints become
inert.

3.3 Type-Checker Plugins
In this paper we describe a fairly general extension to the constraint
solver, but other researchers are interested in different extensions,
for example, to add support for units of measure [2].

Instead of having many ad-hoc extensions directly in GHC’s
constraint solver, we collaborated to define and implement an API
for extending GHC’s functionality via type-checker plug-ins. At
present, we are aware of three users of this API—our work, a
related plug-in that can solve numerical constraints using custom
rewrite rules [3], and the work on units of measure [2].

While this infrastructure is still brand new, and not yet stable,
we hope that this mechanism may be useful to other researchers
too, as it makes it fairly easy to experiment with various exten-
sions to GHC’s constraint solver. Since the framework is aimed at
GHC developers, and is not intended for use in everyday Haskell
programming, the plug-ins have a lot of power. Indeed, it is not dif-
ficult to write a plug-in that would violate type-safety, in much the
same way one could do this by modifying GHC’s constraint solver
directly. The full details of the type-checker plug-ins API may be
found in the GHC User’s Guide [20]. Here we discuss only some of
the design choices that we considered, as they have a direct bearing
on the workings of our plug-in.

An interesting question about type-checker plug-ins is: at what
point in GHC’s type checker should we invoke them? The answer
to this question affects their functionality, and the interface that a
plug-in would have to implement. We considered a few alternatives:

1. Add a pass to the solver’s pipeline, meaning that plug-ins pro-
cess constraints one at a time, the way GHC does.

2. Add a call to the plug-ins after the constraints solver has
reached an inert state.

3. Hand off implication constraints directly to the plug-ins, before
invoking GHC’s constraint solver.

Option 1 has the closest integration with GHC, but since plug-
ins need to process constraints one at a time, then they often ended
up needing some state, which than has to be stored and managed
somewhere, which became rather complicated.



Option 3 is the most general, as it would allow for the plug-in
to completely override GHC’s behavior. However, we were more
interested in extending GHC’s capabilities rather than replacing
them, so we opted against it.

We chose option 2 as a nice middle ground. It allows a plug-
in to work with all constraints at once, but it has the benefit that
standard work done by GHC has already happened. So, after the
constraint solver reaches an inert state, it calls into the plug-ins,
which examine the inert state and attempt to make progress. If they
do, then the constraint solver is restarted and process repeats.

3.4 Improvement and Derived Constraints
An improving substitution [13] allows us to instantiate variables in
the constraints with types, potentially enabling further constraint
simplification. Of course, we should only do so, as long as we
preserve soundness and completeness. In this context, preserving
soundness means that the improved constraints should imply the
original constraints (i.e., we didn’t just drop some constraints),
while completeness means that the original constraints imply the
improved ones (i.e., we didn’t loose generality by making arbitrary
assumptions).

In GHC, improvement happens by rewriting with equality con-
straints. There are three sources of equality constraints:

• given equalities are implied by the given constraints,
• wanted equalities arise when solving wanted constraints,
• derived equalities are implied by the given and wanted con-

straints, together.

The provenance of an equality constraint determines the kinds
of improvements that we can use it for. Given equalities have solid
proof, and so we may use congruence to rewrite any other con-
straint. On the other hand, wanted constraints are goals that need to
be proved, so they cannot be used to rewrite given constraints. We
may still use them to rewrite other wanted or derived constraints
though. Finally, derived equalities are implied by the given and
wanted constraints jointly, so they may not be used in proofs di-
rectly, as doing so may lead to circular reasoning.

Instead, derived equalities help with type inference, by guiding
the instantiation of unification variables. In general, it is always
sound to instantiate a unification variable with whatever type we
want: doing so may reject valid programs, but it will not accept in-
valid ones, because we still need to solve all necessary constraints.
Of course, we don’t want to reject valid programs, and this is where
derived equalities help us: since they are implied by the goals and
assumptions together, we know that we are not loosing any general-
ity when instantiating as suggested by a derived constraint. So, for
example, if we compute a derived constraint x ~ Int, and we have
a wanted constraint Eq x, and x is a unification variable, then we
may rewrite Eq x to Eq Int, which we would proceed to solve as
usual. This is bit subtle: a derived equality is never used directly in
a proof—instead it allows us to change what we are trying to prove
by instantiating unification variables, which may help discharge all
constraints that need solving.

4. Integrating GHC with an SMT Solver
We describe the algorithm in the context of the theory of linear
arithmetic over the natural numbers, as having a concrete theory
makes it easier to explain the process and illustrate it with exam-
ples. In the next section, we discuss how, and why, we might want
to consider other theories also.

Input. Currently, the algorithm is implemented as a type-checker
plug-in, and so the input to the algorithm is a collection of con-
straints that GHC has determined to be inert. This means that GHC

simplified everything as much as it could, improved using equali-
ties, and cannot see anything else to do. The inert constraints are
presented to the plug-in in three collections based on the con-
straints’ provenance: one group contains the given constraints (i.e.,
assumptions), one group contains derived constraints (see Section 3
for details), and one group contains the wanted constraints, which
are the goals that need solving.

Output. The desired output of the algorithm is as follows:

• Solve as many wanted constraints as possible.
• Notice if the wanted constraints are inconsistent.
• Compute new given and derived equalities to help solve con-

straints that are outside this decision procedure’s scope.

The first task is the most obvious purpose of the algorithm, but the
other two are quite important also.

Noticing inconsistencies avoids the inference of types with un-
satisfiable constraints. Consider, for example, a single wanted con-
straint, (x + 5) ~ 2. Since we are working with natural numbers,
this constraint has no solution, so we cannot solve it. As a result,
we may end up inferring a type like this:

someFun :: forall x. (x + 5) ~ 2 => ...

While, technically, this is not wrong, it is undesirable because the
type error is clearly in the definition of someFun, but we would
delay reporting the error until the function is called. So, we’d like
to notice constraints that are impossible to solve (i.e., they are
logically equivalent to⊥), so that we can report type-errors that are
closer to their true location. Note that the source of a contradiction
may be a combination of constraints, and not just a single one.
For example, the constraints x >= 5 and 3 >= x are inconsistent
together, but have solutions when considered individually.

Computing new equations is also very important, as it enables
collaboration between the plug-in and the rest of GHC (i.e., the
main constraint solver, and other plug-ins). For example, consider
an implication constraint of the form:

forall x. (x + 5) ~ 8 => KnownNat x

In this case, we’d like to use the SMT solver to compute a new
given equality, x ~ 3. Then, this equality can be used by GHC to
rewrite the wanted constraint KnownNat x to KnownNat 3 which,
in turn, can be discharged by the custom solver for the KnownNat
class1. Such collaboration between different solvers is quite com-
mon. Interestingly, this looks a lot like the collaboration between
decision procedures in an SMT solver! We discuss this observation
further in Section 6.

4.1 The Language of Constraints
Our first task is to identify constraints that are relevant to our
solver. In the current implementation, we consider equalities and
inequalities between a subset of the type-expressions of kind Nat.
The kind Nat is inhabited by an infinite family of type-constants:

0, 1, 2, .. :: Nat

These constants may be combined and compared using the follow-
ing type-level functions:

type family (+) :: Nat -> Nat -> Nat
type family (*) :: Nat -> Nat -> Nat
type family (<=?) :: Nat -> Nat -> Bool

These functions have no user-specified definitions: instead, we ex-
tended the core GHC simplifier with support for forward evaluation

1 The class KnownNat is defined in module GHC.TypeLits. It is used
to implement singleton types linking type-level literals to their run-time
representations as Integer.



on concrete values, so it will evaluate concrete expressions, such as
2 + 3. This simple forward evaluation cleans up the constraints,
leaving the more complex reasoning—involving variables—to the
algorithm being presently described. Technically, the clean-up is
not necessary because the plug-in will perform as much evaluation
as it needs to solve the constraints, but it is a lot more efficient
to simply evaluate known constants without consulting the exter-
nal solver. Also, at present there is no standard way to declare that
these type function are handled by a special solver—we could use
a closed type family with no equations to prohibit user defined in-
stances, but this is a bit of an abuse of an unrelated feature of the
type system.

The declaration for (<=?) refers to the kind Bool, which is
simply the lifted Bool type. As expected, it is inhabited by the
empty types True and False. Having (<=?) be a function that
returns a boolean is a little more convenient for programmers than
having a constraint. In this form, a programmer may inspect the
result of the inequality and make a decision based on it. We can use
a simple abbreviation to implement the corresponding inequality
constraint:

type (<=) a b = (a <=? b) ~ True

The constraints supported by the external solver are summarized
by the following grammar:

c = e
N∼ e | e B∼ e

eN = α | n | e+ e | n ∗ e
eB = α | False | True | e ≤? e

n = 0 | 1 | . . .

4.2 Importing Constraints
Of course, general constraints may be more complex. In particular,
programmers are free to define their own type functions that return
results of kind Nat, so it is entirely possible to encounter constraints
like (F 3 + 4) ~ 7, where F is some programmer-defined type-
family. It is also possible to encounter non-linear constraints such
as x * y.

The process of identifying relevant constraints is as follows:

1. Set aside constraints that do not have a relevant top-level predi-
cate symbol.

2. Import the parameters to the predicates guided by the kind.

3. If we encounter a type outside of our theory, then we name it
and replace it with a variable.

4. We remember the names assigned to various types, so that we
may reuse the same name if a type appears multiple times.

For example, the constraint (F 3 + 4) ~ 7 will be imported
as (x + 4) ~ 7, and we will remember that x stands for F 3.
Later on, if we need to return results to the core GHC solver that
mention x, we replace it by the original expression, F 3.

The process of abstracting foreign constraints makes sense in
our context, because it generalizes the constraint. Consider a con-
straint C(t), and its generalized form C(x), where the sub-term t
is replaced by the variable x, which does not occur in C(t).

Lemma. If C(t) is satisfiable, then C(x) is also satisfiable.

Proof. This follows because, by definition,C(t) ⇐⇒ C(x)∧x =
t. Therefore, if σ is satisfying assignment for C(t), then σ ∪ {x =
σt} is satisfying assignment for C(x).

Corollary. If C(x) is not satisfiable, then neither is C(t). This is
simply the contrapositive form of the previous Lemma.

Recall from Section 2, that to prove something, we make sure
that there are no counter examples. The Corollary states that if there
are no counter examples to the abstracted constraint, then there will
be no counter-examples to the original constraint as well, and so our
proof is sound. From a logical stand-point, naming away sub-terms
amounts to trying to prove a more general fact, and so if we can
complete the proof in the more general setting, then the proof will
work for the special case of the original constraint.

Aside. The step of naming foreign types is similar to the flattening
step performed by GHC’s constraint solver2. The main difference
being that GHC names every call to a type-function, while we name
only terms outside of the theory. Still, this duplication of work is
somewhat unsatisfactory, and it would be nice to extend GHC’s
flattening pass so that it can be reused by external plug-ins.

Natural Numbers. We are interested in working with natural
numbers, however, the SMT decision procedure works with inte-
gers. To work around this mismatch, we are careful that whenever
we declare an SMT variable corresponding to a type of kind Nat,
we also add a formula asserting that the variable is not negative.

4.3 Communication with the Solver
Different SMT solvers support different mechanisms for interact-
ing with other programs. The most efficient way to interact with a
solver is to link it with the program, and call into the various meth-
ods, using whatever API is exported by the solver. Unfortunately,
this approach requires commitment to a specific solver as the low-
level API of the solvers differ.

In our work, we wanted to have the flexibility to experiment
with different solvers, so we opted for a slightly less optimal but
considerably more portable approach. The multitude of SMT lan-
guages has been recognized as a problem by the SMT community,
and the SMT-LIB standard [4] was developed to address the issue.
A fair number of solvers have support for the standard, so to com-
municate with the solver we developed a Haskell library [9], which
can interact with an SMT solver process by using the SMTLIB lan-
guage. The library manages the connection to the solver, and also
provides combinators to create terms in the common SMT theories.
In the future, we may add support for direct integration with an
SMT solver, and the only impact should be improved performance.

The code samples in the rest of this section use the following
API for interaction with the solver:

data Solver :: *
data Expr :: *
data Result = Sat | Unsat

solverAssert :: Solver -> Expr -> IO ()
solverCheck :: Solver -> IO Result
solverPush :: Solver -> IO ()
solverPop :: Solver -> IO ()

These correspond directly to the commands used in the examples
in Section 2.

4.4 Checking for Consistency
Given some constraints in our theory, we would like to know if
a solution exists. If the constraints are inconsistent, then we can
terminate the constraint solving problem early, and report an error,
as discussed previously.

To check for consistency, we assert all constraints, and ask the
SMT solver if the result is satisfiable. If this is not the case, then we
report an error, otherwise we proceed with the algorithm.

2 GHC’s “flattening” pass names the results of all type functions. This is
done before passing constraints to GHC’s internal solver, but the process is
reverted before passing the constraints to the external plug-ins.



checkConsistent :: Solver -> [Expr] -> IO Bool
checkConsistent s cs =

do mapM_ (solverAssert s) cs
res <- solverCheck s
return (res == Sat)

Note that since we are working with generalized constraints,
if we find an inconsistency, then we are sure that we’ve detected
a problem. However, if the SMT solver says that the constraints
are satisfiable, then we now that this is the case from the point
of view of our theory, however the constraints might still be un-
satisfiable if one took a global view of the problem. Consider, for
example, (F a + 4) ~ 7. This will get imported into our plug-in
as (x + 4) ~ 7, which is satisfiable by x = 3. Now, some other
theory might know that F a ~ 3 is not actually possible, but we
won’t detect this problem at this stage.

4.5 Minimizing Conflicts
If we detect a contradiction, then we know that there is no possible
solution to the constraints. However, often only a few of the con-
straints are involved in the actual problem, and it is much nicer if
we report only them as the cause of the error, rather than getting a
huge error involving all constraints. If an SMT solver detects that
a collection of assertions is inconsistent, it may be able to compute
an unsatisfiability core, which is the sub-set of the assertions that
lead to the conflict—exactly what we want!

Unfortunately, not all SMT solvers support this feature and
CVC4—the SMT solver that we used during the development of
this work—does not have this ability. To work around this, we
implemented a custom reduction algorithm which work as follows:

reduce :: Solver ->
[Expr] -> -- part of conflict
[Expr] -> -- search for conflict
IO [Expr]

reduce s yes [] = return yes
reduce s yes mb =

do solverPush s
search s yes [] mb

search :: Solver ->
[Expr] -> -- part of conflict
[Expr] -> -- currently asserted
[Expr] -> -- search for conflict
IO [Expr]

search s yes mb (c : cs) =
do solverAssert s c

res <- solverCheck s
case res of

Unsat ->
do solverPop s

solverAssert s c
reduce s (c : yes) mb

_ -> search s yes (c : mb) cs

search s yes mb [] = error "Impossible!"

The algorithm keeps track of constraints that we are certain are
part of the conflict in the variable yes. In addition, the algorithm
has the invariant that the constraints in yes are always asserted in
the solver’s state, represented by the variable s. Initially, yes starts
off empty.

We search for conflicts in the function search, which asserts
constraints one at a time, until a conflict is discovered. The con-

straint that caused the conflict is added to the yes set, and then
we examine the previously asserted constraint, to check if they are
necessary for the conflict.

The reduction process performs in O(n2) time, where n is the
number of constraints. This has not been a big problem, as this
reduction happens only when we report errors and, typically, the
number of constraints is fairly low.

Also note that the reduction algorithm may not produce the
smallest collection of constraints to cause a contradiction. For ex-
ample, consider the constraints A,B,C, and suppose that A,B
lead to a contradiction together, and also C causes a contradiction
on its own. Now, depending on the order in which we process the
constraints, we may either computeC as the result of the reduction,
or A,B. This is OK—in this case the context happens to contain
multiple errors, so the reduction algorithm will simply pick one of
them to report. Of course, a program would have to eventually fix
both errors before the program is accepted. The important property
of the algorithm is that the reduced set does not contain redundant
constraints, in the sense that if we removed some of the constraints
the resulting constraint set would be satisfiable.

4.6 Improvement
If all constraint are consistent (i.e., have at least one solution),
then we check for computed equality constraints. As discussed
previously, these help other parts of the constraint solver to make
progress.

It is convenient to compute the improvements right after the
consistency check because at this point we already have all con-
straints asserted in the solver’s state. If all constraints in scope are
given constraints, then we also generate given equalities, otherwise
we generate derived equalities.

The current implementation considers three forms of improve-
ment, two of which are completely generic, and one of which is
specific to linear arithmetic.

Improve to Constant. As we know that the constraints are consis-
tent, we can ask the SMT solver for a satisfying assignment. This
assignment contains one possible solution to constraints, but we
should not emit an improving equality unless we are sure that this
is the the only possible solution. So, if x = v is in the satisfying
assumption, then we try to prove that the currently asserted con-
straints imply this fact. We do this by temporarily asserting x 6= v,
and checking for satisfiability. If the resulting is unsatisfiable, then
we know that v is the only possible value for x, and we can emit
the corresponding improving equation.

solverProve :: Solver -> Expr -> IO Bool
solverProve s p =
do solverPush s

solverAssert s (SMT.not p)
res <- solverCheck s
solverPop s
return (res == Unsat)

mustBeK :: Solver -> Name -> Value -> IO Bool
mustBeK s x v =
solverProve s (eq (SMT.const x) (value v))

This process takes O(n) time, where n is the number of variables.
Note that here we are making use of the incremental capabilities of
the solver, and reusing all asserted constraints, just doing one addi-
tional assert per variable. To see the process in action, consider
the constraint (2 * x) ~ 16. The steps that we’d perform are:



(assert (= (* 2 x) 16))
(check-sat)
; SMT response: SAT
(get-value (x))
; SMT response: (8)
(push 1)
(assert (not (= x 8)))
(check-sat)
; SMT response: UNSAT
(pop 1)
; We generate a computed improvement: x ~ 8

Improve to Variable. We may also use the satisfying assignment
to look for improvements of the form x = y, where x and y are both
variables. We look at the satisfying assignment, ignoring variables
that were already improved to constants, and consider pairs of
variables that happen to have the same value in this assignment.
If x and y are two such variables, then we try to prove that x = y
must hold under the current assumptions:

mustEqual :: Solver -> Name -> Name -> IO Bool
mustEqual s x y =

solverProve s (eq (SMT.const x) (SMT.const y))

This process take O(n2) time, where n is the number of variables,
but we only need to call the solver for pairs of variables that
have the same value—if they do not, then the current assignment
provides a counter example indicating that the variables do not need
to be equal in general.

Improve Using a Linear Relation. This improvement is a gen-
eralization of the previous example, that is specific to linear arith-
metic. The idea is to try to discover improving equations of the
form y = A ∗ x + B. This type of improvement is a little dif-
ferent from the others, in that the right-hand side of the equation
contains terms that are in the theory that we are solving. In gen-
eral, such constraints are not very useful for the rest of GHC, as
other parts of the constraint solver do not know about our theory
(i.e., the functions * or +) and, if we can prove it, then we must
already know about this improvement! This sort of improvement,
is useful in one very common case, however: if y is a unification
variable, then having this type of improving equation enables GHC
to instantiate the variable, which leads to better type inference and
simpler constraints, so we attempt this improvement only when the
previous two have failed, and only for the unification variables in
the constraints.

We can compute the values for A and B, if we have two exam-
ples for x and two examples for y. It is quite standard to ask the
SMT solver for additional examples: this is done by adding addi-
tional constraints that force the models to differ. In our setting we
know that we can always get another such examples—if this was
not the case, a variable would have exactly one possible values, and
we would have improved it to a constant, as describe previously.
Furthermore, since we do the linear relation improvement last, we
usually can avoid extra calls to the solver because by this point we
typically already have two models where the variables differ. It is
also important that the x values be different, but we can always find
such examples: if we cannot find such an example, then x would
have only one possible value, and it would have been improved al-
ready.

Once we compute candidate values forA andB, we still need to
invoke the solver to validate that the computed relation holds in all
instances of the constraints, and not just the two that we happened
to pick.

To see when this improvement is needed, consider the following
program fragment:

f :: Proxy (a + 1)
f = Proxy

g :: Proxy (b + 2)
g = f

To check this program, GHC needs to solve the constraint
(?a + 1) ~ (b + 2). The question mark in ?a emphasizes that
this is a unification variable, standing-in for a type that needs to be
inferred. We cannot discharge this constraint immediately, because
it does not hold for all possible values of ?a and b. However, since
?a is a unification variable, we have the option of instantiating it
to change the constraint. Of course, we have to be careful that in
doing so we do not loose any generality and, in this case, the safe
instantiation is ?a := b + 1. The purpose of the linear-relation
improvement is to discover these kinds of instantiations.

At first sight, this example may appear artificial, however it is an
abstraction of a very common pattern: namely when one function
calls another, and the type of the provided argument does not
match syntactically the type of the expected argument. As another
example, consider the function vecHead, which requires that its
parameter has at least one element:

vecHead :: Vec (n + 1) a -> a
vecHead (Cons x _) = x

Now, if we tried to call vecHead with an expression of type
Vec (b + 2) a, we’d end up in exactly the same situation as
the previous example, where we’d have to infer that ?n = b + 1.

Our current implementation only considers linear relations be-
tween pairs of variables as we were concerned about the perfor-
mance penalty if we tried combinations of more variables: the math
will work out, but the algorithm might become too slow to be prac-
tical, and alternative solutions based on rewriting might be more
suitable.

We admit that this improvement is somewhat ad-hoc, but as the
previous examples illustrate, it helps in situations that are quite
common in practice. It was also fairly simple to implement using
the solver.

Custom Improving Rewrites. All the improvements that we’ve
defined so far work by only using the solver—note that we were
just looking at satisfying assignments, and did not have any special
rules about the shapes of the constraints. It also makes sense to ex-
tend the system with custom rewrite rules, which has the potential
of speeding up performance, and also adding support for features
that go beyond the solver’s capabilities. We have experimented with
various custom rules, but it is as yet unclear what constitutes a good
set of rewrites. Concrete custom rules that would help are various
normalization rules, for example applying distributivity repeatedly,
and also rules that rewrite equations so that there is just a unifica-
tion variable on the one side of the equation, which would help it
get instantiated.

4.7 Solving Constraints
The process of solving constraints is a straight-forward call to the
solver. The only thing we need to do before solving constraints is
to remove the assertions that were added during the consistency
and improvement stages. Recall that GHC solves implication con-
straints with two calls to the constraint solver: the first one asserts
the given constraints, while the second one actually solves goals.

While we are asserting the assumption, we just check for consis-
tency and improvement (to generate new given equalities), but we
perform no solving as there is nothing to solve. During the solving
stage, we mark the solver’s state after we’ve asserted the givens,



then we assert the new goals, check for consistency, and improve-
ment, and then, before solving, revert back to the state where only
the givens are asserted.

solverSimplify :: Solver ->
[Expr] -> IO ([Expr],[Expr])

solverSimplify s wanteds =
solverPrepare s wanteds $ \others our_wanteds ->
do res <- mapM tryToSolve our_wanteds

let (unsolved, solved) = partitionEithers res
return (solved, unsolved ++ others)

where
tryToSolve (ct,e) =
do proved <- solverProve s e

if proved
then return (Right ct)
else return (Left ct)

The call to solverPrepare identifies the constraints that belong
to our theory and translates them the SMTLIB language, where
others are the constraints that are completely outside our theory,
and out_wanteds are the constraints that we know about. Then,
we invoke the solver for each goal, and see if we can prove it.

Evidence. When we solve a constraint, GHC expects some evi-
dence to be produced, explaining why the constraint holds [6]. The
same is expected when generating new given constraints. While
this evidence is not used for code generation, it is a very useful for
sanity checking while working with the constraint solver. Unfor-
tunately, at present, our plug-in does not produce any meaningful
evidence, beyond indicating that the fact was produced by using the
SMT solver. In principle, SMT solvers should be able to produce
a proof, when they have concluded that a set of assertions is un-
satisfiable. Unfortunately, this is not a commonly used feature, so
many provers do not support it out of the box, and the format of the
proofs is not standardized.

4.8 Our Implementation
To demonstrate the feasibility of the ideas described in this section,
we implemented a GHC plug-in, available from GitHub [10]. The
implementation is intended as a proof-of-concept, and is not yet
“industrial strength”—more engineering work would be required
to make it more robust and easier to install and configure.

The majority of the effort so far has been focused on understand-
ing how to integrate an SMT solver with the type-checker, and we
have not conducted extensive testing and measurement of the per-
formance of the plug-in. It is clear that calling out to an external
tool has a cost associated with it. However, the preliminary results
are encouraging—the plug-in functions quite well on small exam-
ples, but certainly more testing and experience is needed to find out
if the approach will scale to larger projects.

If despite all the disclaimers, the reader is still interested in
experimenting with the plug-in, we provide the list of GHC options
and extensions that we used in the examples from this paper:

{-# OPTIONS_GHC -fplugin=TypeNatSolver #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE GADTs #-}

The option fplugin=TypeNatSolver instructs GHC to load
the SMT solver plug-in. The rest are Haskell extensions that are
commonly used in this setting:

• DataKinds enables natural number literals at the type level.
• TypeOperators and TypeFamilies are need to work with

type-level functions such as +.
• KindSignatures is used to specify the kinds of type variables,

for example, to state that some type-variable is of kind Nat.
• GADTs enables Generalized Algebraic Data-types; strictly speak-

ing, these are not required to experiment with the plug-in, how-
ever, many of the more interesting uses of the plug-in end up
using GADTs.

For the experiments in this paper, we used CVC4, version 1.4.
There was no deep reason for using this particular solver, other that
when we started working on the project this was the solver with
the least restrictive license. To communicate with the solver, plug-
in uses the SMTLIB format (version 2). Many other SMT solvers
support this format (e.g., Z3, Yices), so they should work just as
well.

5. Other Theories
In the previous section, we described the core working of a proce-
dure for integrating an SMT solver with GHC’s constraint solver.
While we concentrated on the theory of natural numbers and linear
arithmetic, little of the algorithm is specific to that theory.

In principle, it should be fairly easy to add support for other
theories, simply by declaring additional “uninterpreted” kinds and
type-functions in Haskell. Of course—as is often the case—doing
so is not completely trivial, which is why we have not done so yet.
For example, while we have presented a mechanism for working
with the symbols of a new theory in the type-checker, one still
needs to make decisions about which symbols to import, or what
notation to use. In the rest of this section we explore some of these
possibilities.

5.1 A Theory for Booleans
We already made use of the lifted Bool type, but so far Haskell does
not support any interesting operations beyond the <=? relation that
we described. Programmers are already experimenting with defin-
ing type functions. For example, with the current version of GHC
we may define a function for conjunction of type-level booleans:

type family And a b where
And False x = False
And True x = x

Definitions like this work for simple evaluation, but do not sup-
port more sophisticated reasoning. For example, if GHC encounters
the constraint And x y ~ True, it will not be able to conclude that
the only way to solve this is if x ~ True and y ~ True both hold.
Using the approach outlined in the previous section, we gain the
full power of a SAT solver in the type system—SMT solvers can
reason about booleans, indeed a SAT solver is usually an important
part of the implementation of an SMT solver.

A good starting point for the theory of booleans, would be the
following signature:

type family And (a :: Bool) (b :: Bool) :: Bool
type family Or (a :: Bool) (b :: Bool) :: Bool
type family Not (a :: Bool) :: Bool

5.2 A Theory for Integers
So far, our work uses natural numbers, which are quite useful
for keeping track of the sizes of data-structures such as arrays,
vectors, lists, bit-vectors, etc. The standard theory supported by the
SMT solvers is actually linear arithmetic over the integers—in our



implementation we have to do some extra work to assert that we
are only interested in non-negative solutions.

The main challenge for supporting both integers and natural
numbers at the type level is not the technology for solving the
equations, but the notation! One possible signature for the theory
of type-level integers is:

type family ToInt (a :: Nat) :: Int
type family Negate (a :: Int) :: Int
type family Add (a :: Int) (b :: Int) :: Int
type family Sub (a :: Int) (b :: Int) :: Int
type family Mul (a :: Int) (b :: Int) :: Int

While this notation is somewhat verbose, at least it has the benefit
of exposing the functionality to programmers, who may use a
more suitable notation depending on their needs. For example, if
a program works mostly with integers, one could add the following
declaration, to get the more usual mathematical notation:

type (+) a b = Add a b

5.3 A Theory of Bit-Vectors
SMT solvers also have good support for reasoning about fixed-
length bit-vectors. Unlike the theory of linear arithmetic, the theory
of bit-vectors supports arbitrary multiplication and division, as well
as various bit-wise operations, similar to the operations available in
hardware.

Tracking Sizes. If we are interested in keeping track of the sizes
of data-structures in memory, using 64-bit bit-vectors is a reason-
able compromise which provides more expressive reasoning than
linear arithmetic, and accommodates virtually all data-structures
that fit in a computer’s memory.

Finite Sets. Another potential application for the theory of bit-
vectors is to implement finite sets of integers at the type level. As is
usual at the value level, each bit is used to indicating the presence
or absence of an element in the set, and the bitwise and and or
operations correspond to intersection and union. Such functionality
would be useful in the implementation of various effect systems.

6. A Modular Constraint Solver
In Section 4 we outlined an algorithm for using an SMT solver to
solver a certain class of constraints, and then in Section 5 we ob-
served that it is possible—and potentially useful—to solve many
other constraints. This raises an interesting question: is it possible
to structure the entire constraint solver for a complex programming
language, such as Haskell or ML, using a modular approach, simi-
lar to the structure of an SMT solver?

We do not know that answer to this question, but the rest of
this section, we present a little bit about the structure of SMT
solvers, and point out similarities with GHC’s constraint solver,
which suggests that this might be a fruitful area for future research.

6.1 The Nelson-Oppen Method
An SMT solver uses a collection of independent decision proce-
dures, and orchestrates them to compute an answer to a given query.
A well-known technique for combining decision procedures is due
to Nelson and Oppen [8]. Their algorithm starts with a collec-
tion of orthogonal theories (i.e., the symbols in the theories do not
overlap), and shows how we may simplify terms in the combined
language of the theories using equality propagation. The equality
propagation procedure has a lot of similarities to the algorithm pre-
sented in this paper, and this is entirely by design on our part.

First, constraints that mention symbols from multiple theories
are rewritten so that each constraint mentions only symbols in a

single theory. This is done by naming “foreign” sub-terms, in the
same way we described earlier in the paper.

Each collection of constraints is sent to the appropriate decision
procedure to be checked for consistency. If one of the procedures
detects an inconsistency, then we know that the whole collection of
constraints is inconsistent and we may stop.

If the constraints look consistent, then the decision procedures
are given a chance to “communicate” with each other via equality
constraints. This is analogous to the improvement step in what
we described. A key observation of Nelson and Oppen is that
the only constraints that need to be communicated are equalities
between variables. The intuition behind this observation is that
other equalities would feature symbols that are “foreign” to the
other decision procedures, and they would not know what to do
with them.

So, if one decision procedure emits an equality constraint that
was not known by some of the others, we propagate this informa-
tion, and again check for consistency and further improvement.

Finally, the Nelson-Oppen technique also allows for a more gen-
eral form of communication between procedures—a decision pro-
cedure may indicate that it can solve a problem in multiple ways, by
emitting a disjunction of equality constraints. If this happens, then
the coordinating logic has to explore all possibilities, the problem
being satisfiable if any one of the options succeeds, and it is not
satisfiable otherwise. Searching the options introduced by disjunc-
tions is typically implemented with the aid of a SAT solver, which
is usually considerably more efficient than simply trying all possi-
bilities, as SAT solvers propagate information to prune the search
space.

To implement the backtracking search efficiently, the decision
procedures are typically incremental (i.e, they can revert back to a
previous known state). Some techniques can improve this search
process further, by using decision procedures that also produce
proofs, [19], as these proofs can be used to identify dependencies
between variables.

So, the overall setups is that we have a collection of independent
decision procedures—each specializing in a single theory—and
they communicate by disjunctions of equalities. There are three
cases, depending on the shape of the disjunction:

• an empty disjunction indicates a conflict,
• a singleton disjunction is a certain improvement, and we prop-

agate it across theories,
• a proper disjunction results in search.

6.2 Theories of Haskell
While GHC’s constraint solver currently is structured quite differ-
ently from an SMT solver, the similarities—in particular, the use of
equality constraints to disseminate information—suggest that there
may be a more modular way to structuring the solver.

While GHC currently does not do any back-tracking search
(i.e., decision procedure may only report inconsistency, or certain
knowledge), this is also the case for Nelson-Open if all theories are
convex [8]. In addition, there are interesting cases where backtrack-
ing might be potentially useful in Haskell too. For example, when
solving class constraints in the context of overlapping instances, or
instance chains [11], it is useful to consider the context of instances,
but back-track and try a different instance, if the context is found to
be unsatisfiable.

GHC’s implementation of Haskell contains numerous exten-
sions, and so there are many candidates for potential “theories”,
that is, constraints that are solved by a dedicated decision proce-
dure. Engineering a constraint solver in this style would be very
beneficial, both as one could reason about the correctness of each



decision procedure separately, but also, because it would make it
simpler to experiment with new extensions to the system.

7. Conclusion
The paper introduces the basics of GHC’s constraint solver, and
shows how to connect it with an external decision procedure that
produces satisfying assignments. The initial motivation for this
work was to improve the type-level support for natural numbers,
but the solution turned out to be more general, and opens up the
door for interesting new extensions to Haskell’s type system. More
generally, we have identified similarities between the techniques
used to implement SMT solvers, and the implementation of GHC’s
constraint solver, which suggests the possibility of a modular con-
straint solver design.
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